
19. Effect Size
A. Proportions
B. Difference between Means
C. Variance Explained
D. Exercises
Researchers often seek to learn more than whether the variable under investigation 
has an effect and/or the direction of the effect. This is particularly true for research 
that has practical applications. For example, an investigation of the efficacy of a 
pain-relief drug would seek to determine the extent of the relief and not merely 
whether there was any relief. Similarly, a study of a test-preparation course's 
efficacy would seek to determine how much the course raises students' test scores. 
Finally, a study of the relationship between exercise and blood pressure would seek 
to determine how much blood pressure decreases for a given amount of exercise. 
In all of these examples, a significance test would not be sufficient since it would 
only provide the researcher with information about the existence and direction of 
the effect. It would not provide any information about the size of the effect.

Before we proceed with a discussion of how to measure effect size, it is 
important to consider that for some research it is the presence or absence of an 
effect rather than its size that is important. A controversial example is provided by 
Bem (2011) who investigated precognition. Bem found statistically significant 
evidence that subjects' responses are affected by future events. That is, he rejected 
the null hypothesis that there is no effect. The important question is not the size of 
the effect but, rather, whether it exists at all. It would be truly remarkable if future 
events affect present responses even a little. It is important to note that subsequent 
research (Ritchie, Wiseman, & French, 2012) has failed to replicate Bem's results 
and the likelihood that the precognition effects he described are real is very low.
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Proportions
by David M. Lane

Prerequisites
• none

Learning Objectives
1. Compute absolute risk reduction
2. Compute relative risk reduction
3. Compute number needed to treat

Often the interpretation of a proportion is self-evident. For example, the obesity 
rate for white non-Hispanic adults living in the United States was estimated by a 
study conducted between 2006 and 2008 to be 24%. This value of 24% is easily 
interpretable and indicates the magnitude of the obesity problem in this population.

Often the question of interest involves the comparison of two outcomes. For 
example, consider the analysis of proportions in the case study “Mediterranean 
Diet and Health.” In this study, one group of people followed the diet 
recommended by the American Heart Association (AHA), whereas a second group 
followed the “Mediterranean Diet.” One interesting comparison is between the 
proportions of people who were healthy throughout the study as a function of diet. 
It turned out that 0.79 of the people who followed the AHA diet and 0.90 of those 
who followed the Mediterranean diet were healthy. How is the effect size of diet 
best measured?

We will take the perspective that we are assessing the benefits of switching 
from the AHA diet to the Mediterranean diet. One way to assess the benefits is to 
compute the difference between the proportion who were not healthy on the AHA 
diet (0.21) with the proportion who were not healthy on the Mediterranean diet 
(0.10). Therefore, the difference in proportions is:

0.21 - 0.10 = 0.11.

This measure of the benefit is called the Absolute Risk Reduction (ARR).
To define ARR more formally, let C be the proportion of people in the 

control group with the ailment of interest and T be the proportion in the treatment 
group. ARR can then be defined as:
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ARR = C - T

Alternatively, one could measure the difference in terms of percentages. For our 
example, the proportion of non-healthy people on the Mediterranean diet (0.10) is 
52% lower than the proportion of non-healthy people on the AHA diet (0.21). This 
value is computed as follows:

(0.21 - 0.10)/0.21 x 100 = 52%

This measure of the benefit is called the Relative Risk Reduction (RRR). The 
general formula for RRR is:

RRR = (C - T)/C x 100

where C and T are defined as before.
A third commonly used measure is the “odds ratio.” For our example, the 

odds of being healthy on the Mediterranean diet are 90:10 = 9:1; the odds on the 
AHA diet are 79:21 = 3.76:1. The ratio of these two odds is 9/3.76 = 2.39. 
Therefore, the odds of being healthy on the Mediterranean diet is 2.39 times the 
odds of being healthy on the AHA diet. Note that the odds ratio is the ratio of the 
odds and not the ratio of the probabilities.

A fourth measure is the number of people who need to be treated in order to 
prevent one person from having the ailment of interest. In our example, being 
treated means changing from the AHA diet to the Mediterranean diet. The number 
who need to be treated can be defined as

N = 1/ARR

For our example,

N = 1/0.11 = 9

Therefore, one person who would otherwise not be healthy would be expected to 
stay healthy for every nine people changing from the AHA diet to the 
Mediterranean diet.

The obvious question is which of these measures is the best one. Although 
each measure has its proper uses, the RRR measure can exaggerate the importance 
of an effect, especially when the absolute risks are low. For example, if a drug 
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reduced the risk of a certain disease from 1 in 1,000,000 to 1 in 2,000,000, the 
RRR is 50%. However, since the ARR is only 0.0000005, the practical reduction in 
risk is minimal.
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Difference Between Two Means
by David M. Lane

Prerequisites
• Chapter 3: Measures of Variability
• Chapter 12: Differences between Two Means (Independent Groups)
• Chapter 16: Chapter Log Transformations

Learning Objectives
1. State how the inherent meaningfulness of the scales affects the type of measure 

that should be used
2. Compute g
3. Compute d
4. State the effect of the variability of subjects on the size of standardized 

measures

When the units of a measurement scale are meaningful in their own right, then the 
difference between means is a good and easily interpretable measure of effect size. 
For example, a study conducted by Holbrook, Crowther, Lotter, Cheng and King in 
2000 investigated the effectiveness of benzodiazepine for the treatment of 
insomnia. These researchers found that, compared to a placebo, this drug increased 
total sleep duration by a mean of 61.8 minutes. This difference in means shows 
clearly the degree to which benzodiazepine is effective. (It is important to note that 
the drug was found to sometimes have adverse side effects.)

When the dependent variable is measured on a ratio scale, it is often 
informative to consider the proportional difference between means in addition to 
the absolute difference. For example, if in the Holbrook et al. study the mean total 
sleep time for the placebo group were 120 minutes, then the 61.8-minute increase 
would represent a 51% increase in sleep time. On the other hand, if the mean sleep 
time for the placebo were 420 minutes, then the 61.8-minute increase would 
represent a 15% increase in sleep time.

It is interesting to note that if a log transformation is applied to the 
dependent variable, then equal percent changes on the original scale will result in 
equal absolute changes on the log scale. For example, suppose the mean sleep time 
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increased 10% from 400 minutes to 440 in one condition and 10% from 300 to 330 
minutes in a second condition. If we take the log base 10 of these values, we find 
that Log(440) - Log(400) = 2.643 - 2.602 = 0.041 and, similarly, Log(330) - 
Log(300) = 2.518 - 2.477 = 0.041.

Many times the dependent variable is measured on a scale that is not 
inherently meaningful. For example, in the “Animal Research” case study, attitudes 
toward animal research were measured on a 7-point scale. The mean rating of 
women on whether animal research is wrong was 1.47 scale units higher than the 
mean rating of men. However, it is not clear whether this 1.47-unit difference 
should be considered a large effect or a small effect, since it is not clear exactly 
what this difference means.

When the scale of a dependent variable is not inherently meaningful, it is 
common to consider the difference between means in standardized units. That is, 
effect size is measured in terms of the number of standard deviations the means 
differ by. Two commonly used measures are Hedges' g and Cohen's d. Both of 
these measures consist of the difference between means divided by the standard 
deviation. They differ only in that Hedges' g uses the version of the standard 
deviation formula in which you divide by N-1, whereas Cohen's d uses the version 
in which you divide by N. The two formulas are given below.
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where M1 is the mean of the first group, M2 is the mean of the second group, MSE 
is the mean square error, and N is the total number of observations.

Standardized measures such as Cohen's d and Hedges' g have the advantage 
that they are scale free. That is, since the dependent variable is standardized, the 
original units are replaced by standardized units and are interpretable even if the 
original scale units do not have clear meaning. Consider the Animal Research case 
study in which attitudes were measured on a 7-point scale. On a rating of whether 
animal research is wrong, the mean for women was 5.353, the mean for men was 
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3.882, and MSE was 2.864. Hedges’ g can be calculated to be 0.87. It is more 
meaningful to say that the means were 0.87 standard deviations apart than 1.47 
scale units apart since the scale units are not well defined.

It is natural to ask what constitutes a large effect. Although there is no 
objective answer to this question, the guidelines suggested by Cohen (1988) stating 
that an effect size of 0.2 is a small effect, an effect size of 0.5 is a medium effect, 
and an effect size of 0.8 is a large effect have been widely adopted. Based on these 
guidelines, the effect size of 0.87 is a large effect.

It should be noted, however, that these guidelines are somewhat arbitrary 
and have not been universally accepted. For example, Lenth (2001) argued that 
other important factors are ignored if Cohen's definition of effect size is used to 
choose a sample size to achieve a given level of power.

Interpretational Issues
It is important to realize that the importance of an effect depends on the context. 
For example, a small effect can make a big difference if only extreme observations 
are of interest. Consider a situation in which a test is used to select students for a 
highly selective program. Assume that there are two types of students (red and 
blue) and that the mean for the red students is 52, the mean for the blue students is 
50, both distributions are normal, and the standard deviation for each distribution is 
10. The difference in means is therefore only 0.2 standard deviations and would 
generally be considered to be a small difference. Now assume that only students 
who scored 70 or higher would be selected for the program. Would there be a big 
difference between the proportion of blue and red students who would be able to be 
accepted into the program? It turns out that the proportion of red students who 
would qualify is 0.036 and the proportion of blue students is 0.023. Although this 
difference is small in absolute terms, the ratio of red to blue students who qualify is 
1.6:1. This means that if 100 students were to be accepted and if equal numbers of 
randomly-selected red and blue students applied, 62% would be red and 38% 
would be blue. In most contexts this would be considered an important difference.

When the effect size is measured in standard deviation units as it is for 
Hedges' g and Cohen's d, it is important to recognize that the variability in the 
subjects has a large influence on the effect size measure. Therefore, if two 
experiments both compared the same treatment to a control but the subjects were 
much more homogeneous in Experiment 1 than in Experiment 2, then a 
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standardized effect size measure would be much larger in the former experiment 
than in the latter. Consider two hypothetical experiments on the effect of an 
exercise program on blood pressure. Assume that the mean effect on systolic blood 
pressure of the program is 10mmHg and that, due to differences in the subject 
populations sampled in the two experiments, the standard deviation was 20 in 
Experiment 1 and 30 in Experiment 2. Under these conditions, the standardized 
measure of effect size would be 0.50 in Experiment 1 and 0.33 in Experiment 2. 
This standardized difference in effect size occurs even though the effectiveness of 
the treatment is exactly the same in the two experiments.
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Proportion of  Variance Explained
by David M. Lane

Prerequisites
• Chapter 15: One-Factor ANOVA (Between Subjects)
• Chapter 14: Partitioning Sums of Squares
• Chapter 14: Multiple Regression

Learning Objectives
1. State the difference in bias between η2 and ω2

2. Compute η2

3. Compute ω2

4. Distinguish between ω2 and partial ω2

5. State the bias in R2 and what can be done to reduce it 

Effect sizes are often measured in terms of the proportion of variance explained by 
a variable. In this section, we discuss this way to measure effect size in both 
ANOVA designs and in correlational studies.

ANOVA Designs
Responses of subjects will vary in just about every experiment. Consider, for 
example, the “Smiles and Leniency” case study. A histogram of the dependent 
variable “leniency” is shown in Figure 1. It is clear that the leniency scores vary 
considerably. There are many reasons why the scores differ. One, of course, is that 
subjects were assigned to four different smile conditions and the condition they 
were in may have affected their leniency score. In addition, it is likely that some 
subjects are generally more lenient than others, thus contributing to the differences 
among scores. There are many other possible sources of differences in leniency 
ratings including, perhaps, that some subjects were in better moods than other 
subjects and/or that some subjects reacted more negatively than others to the looks 
or mannerisms of the stimulus person. You can imagine that there are innumerable 
other reasons why the scores of the subjects could differ.

649



0"

5"

10"

15"

20"

25"

30"

35"

2.5" 3.5" 4.5" 5.5" 6.5" 7.5" 8.5" 9.5"

Fr
eq

ue
nc
y)

Leniency)

Figure 1. Distribution of leniency scores.

One way to measure the effect of conditions is to determine the proportion of the 
variance among subjects' scores that is attributable to conditions. In this example, 
the variance of scores is 2.794. The question is how this variance compares with 
what the variance would have been if every subject had been in the same treatment 
condition. We estimate this by computing the variance within each of the treatment 
conditions and taking the mean of these variances. For this example, the mean of 
the variances is 2.649. Since the mean variance within the smile conditions is not 
that much less than the variance ignoring conditions, it is clear that “Smile 
Condition” is not responsible for a high percentage of the variance of the scores. 
The most convenient way to compute the proportion explained is in terms of the 
sum of squares “conditions” and the sum of squares total. The computations for 
these sums of squares are shown in the chapter on ANOVA. For the present data, 
the sum of squares for “Smile Condition” is 27.544 and the sum of squares total is 
377.189. Therefore, the proportion explained by “Smile Condition” is:

27.544/377.189 = 0.073.

Thus, 0.073 or 7.3% of the variance is explained by “Smile Condition.”
An alternative way to look at the variance explained is as the proportion 

reduction in error. The sum of squares total (377.189) represents the variation when 
“Smile Condition” is ignored and the sum of squares error (377.189 - 27.544 = 
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349.654) is the variation left over when “Smile Condition” is accounted for. The 
difference between 377.189 and 349.654 is 27.535. The reduction in error of 
27.535 represents a proportional reduction of 27.535/377.189 = 0.073, the same 
value as computed in terms of proportion of variance explained.

This measure of effect size, whether computed in terms of variance 
explained or in terms of percent reduction in error, is called η2 where η is the 
Greek letter eta. Unfortunately, η2 tends to overestimate the variance explained and 
is therefore a biased estimate of the proportion of variance explained. As such, it is 
not recommended (despite the fact that it is reported by a leading statistics 
package).

An alternative measure, ω2 (omega squared), is unbiased and can be 
computed from
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where MSE is the mean square error and k is the number of conditions. For this 
example, k = 4 and ω2 = 0.052.

It is important to be aware that both the variability of the population sampled 
and the specific levels of the independent variable are important determinants of 
the proportion of variance explained. Consider two possible designs of an 
experiment investigating the effect of alcohol consumption on driving ability. As 
can be seen in Table 1, Design 1 has a smaller range of doses and a more diverse 
population than Design 2. What are the implications for the proportion of variance 
explained by Dose? Variation due to Dose would be greater in Design 2 than 
Design 1 since alcohol is manipulated more strongly than in Design 1. However, 
the variance in the population should be greater in Design 1 since it includes a 
more diverse set of drivers. Since with Design 1 the variance due to Dose would be 
smaller and the total variance would be larger, the proportion of variance explained 
by Dose would be much less using Design 1 than using Design 2. Thus, the 
proportion of variance explained is not a general characteristic of the independent 
variable. Instead, it is dependent on the specific levels of the independent variable 
used in the experiment and the variability of the population sampled.
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Table 1. Design Parameters

Design Doses Population

1
0.00
0.30
0.60

All Drivers between 16 and 80 Years

2
0.00

0.50 1.00
Experienced Drivers between 25 and 30 
Years

Factorial Designs
In one-factor designs, the sum of squares total is the sum of squares condition plus 
the sum of squares error. The proportion of variance explained is defined relative to 
sum of squares total. In an A x B design, there are three sources of variation (A, B, 
A x B) in addition to error. The proportion of variance explained for a variable (A, 
for example) could be defined relative to the sum of squares total (SSQA + SSQB 
+SSQAxB + SSQerror) or relative to SSQA + SSQerror.

To illustrate with an example, consider a hypothetical experiment on the 
effects of age (6 and 12 years) and of methods for teaching reading (experimental 
and control conditions). The means are shown in Table 2. The standard deviation of 
each of the four cells (Age x Treatment combinations) is 5. (Naturally, for real 
data, the standard deviations would not be exactly equal and the means would not 
be whole numbers.) Finally, there were 10 subjects per cell resulting in a total of 40 
subjects.

Table 2. Condition Means

  TreatmentTreatment

Age Experimental Control

6 40 42

12 50 56

The sources of variation, degrees of freedom, and sums of squares from the 
analysis of variance summary table as well as four measures of effect size are 
shown in Table 3. Note that the sum of squares for age is very large relative to the 
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other two effects. This is what would be expected since the difference in reading 
ability between 6- and 12-year-olds is very large relative to the effect of condition.

Table 3. ANOVA Summary Table

Source df SSQ η2
partial
η2 ω2

partial
ω2

Age 1 1440 0.567 0.615 0.552 0.586

Condition 1 160 0.063 0.151 0.053 0.119

A x C 1 40 0.016 0.043 0.006 0.015

Error 36 900900900900900

Total 39 25402540254025402540

First, we consider the two methods of computing η2, labeled η2 and partial η2. The 
value of η2 for an effect is simply the sum of squares for this effect divided by the 
sum of squares total. For example, the η2 for Age is 1440/2540 = 0.567. As in a 
one-factor design, η2 is the proportion of the total variation explained by a variable. 
Partial η2 for Age is SSQAge divided by (SSQAge + SSQerror) which is 1440/2340 = 
0.615.

As you can see, the partial η2 is larger than η2. This is because the 
denominator is smaller for the partial η2. The difference between η2 and partial η2 

is even larger for the effect of condition. This is because SSQAge is large and it 
makes a big difference whether or not it is included in the denominator.

As noted previously, it is better to use ω2 than η2 because η2 has a positive 
bias. You can see that the values for ω2 are smaller than for η2. The calculations for 
ω2 are shown below:
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where N is the total number of observations.
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The choice of whether to use ω2 or the partial ω2 is subjective; neither one is 
correct or incorrect. However, it is important to understand the difference and, if 
you are using computer software, to know which version is being computed. 
(Beware, at least one software package labels the statistics incorrectly).

Correlational Studies
In the section “Partitioning the Sums of Squares” in the Regression chapter, we 
saw that the sum of squares for Y (the criterion variable) can be partitioned into the 
sum of squares explained and the sum of squares error. The proportion of variance 
explained in multiple regression is therefore:

SSQexplained/SSQtotal

In simple regression, the proportion of variance explained is equal to r2; in multiple 
regression, it is equal to R2.
In general, R2 is analogous to η2and is a biased estimate of the variance explained. 
The following formula for adjusted R2 is analogous to ω2 and is less biased 
(although not completely unbiased):
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! where N is the total number of observations and p is the number of predictor 

variables.
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Statistical Literacy
by David M. Lane

Prerequisites
• Chapter 19:

This article describes some health effects of drinking coffee. Among the key 
findings were (a) women who drank four or more cups a day reduced their risk of 
endometrial cancer by 25% compared with those who drank less than one cup a 
day and (b) men who drank six or more cups had a 60% lower risk of developing 
the most deadly form of prostate cancer than those who drank less than one cup a 
day.

What do you think?
What is the technical term for the measure of risk reduction reported? What 
measures of risk reduction cannot be determined from the article? What additional 
information would have been helpful for assessing risk reduction?

This is called the "relative risk reduction." The article does not 
provide information necessary to compute the absolute risk 
reduction, the odds ratio, or the number needed to treat. It 
would have been helpful if  the article had reported the 
proportion of  women drinking less than one cup a day who 
developed endometrial cancer as well as the analogous statistic 
for men and prostate cancer.
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Exercises

Prerequisites
All content in this chapter

1. If the probability of a disease is .34 without treatment and .22 with treatment 
then what is the
(a) absolute risk reduction
(b) relative risk reduction
(c) Odds ratio
(d) Number needed to treat

2. When is it meaningful to compute the proportional difference between means?

3. The mean for an experimental group is 12, the mean for the control group were 
8, the MSE from the ANOVA is 16, and N, the number of observations is 20, 
compute g and d.

4. Two experiments investigated the same variables but one of the experiment had 
subject who differed greatly from each other whereas the subjects in the other 
experiment were relatively homogeneous. Which experiment would likely have 
the larger value of g?

5. Why is ω2 preferable to η2?

6. What is the difference between η2 and partial η2?

Questions from Case Studies

Teacher Ratings (TR)

7. (TR) What are the values of d and g?

8. (TR) What are the values of ω2 and η2?

Smiles and Leniency (SL)

9. (SL)What are the values of ω2 and η2? 

657



Obesity and Bias (OB)

10. For compute ω2 and partial ω2 for the effect of “Weight” in a “Weight x 
Relatedness” ANOVA.
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