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Quantile-Quantile (q-q) Plots
by David Scott

Prerequisites
• Chapter 1: Distributions
• Chapter 1: Percentiles
• Chapter 2: Histograms
• Chapter 4: Introduction to Bivariate Data 
• Chapter 7: Introduction to Normal Distributions

Learning Objectives
1. State what q-q plots are used for.
2. Describe the shape of a q-q plot when the distributional assumption is met.
3. Be able to create a normal q-q plot.

Introduction
The quantile-quantile or q-q plot is an exploratory graphical device used to check 
the validity of a distributional assumption for a data set. In general, the basic idea 
is to compute the theoretically expected value for each data point based on the 
distribution in question. If the data indeed follow the assumed distribution, then the 
points on the q-q plot will fall approximately on a straight line.

Before delving into the details of q-q plots, we first describe two related 
graphical methods for assessing distributional assumptions: the histogram and the 
cumulative distribution function (CDF). As will be seen, q-q plots are more general 
than these alternatives.

Assessing Distributional Assumptions
As an example, consider data measured from a physical device such as the spinner 
depicted in Figure 1. The red arrow is spun around the center, and when the arrow 
stops spinning, the number between 0 and 1 is recorded. Can we determine if the 
spinner is fair?
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If the spinner is fair, then these numbers should follow a uniform distribution. To
investigate whether the spinner is fair, spin the arrow n times, and record the
measurements by {μ1, μ2, ..., μn}. In this example we collect n = 100 samples. The
histogram provides a useful visualization of these data. In Figure 2, we display three
different histograms on a probability scale. The histogram should be flat for a uniform
sample, but the visual perception varies depending on whether the histogram has 10, 5,
or 3 bins. The last histogram looks flat, but the other two histograms are not obviously
flat. It is not clear which histogram we should base our conclusion on.

Figure 2. Three histograms of a sample of 100 uniform points.

Alternatively, we might use the cumulative distribution function (CDF), which is
denoted by F(μ). The CDF gives the probability that the spinner gives a value less than

Figure 1. A physical device that gives samples from a uniform distribution.

If the spinner is fair, then these numbers should follow a uniform distribution. To 
investigate whether the spinner is fair, spin the arrow n times, and record the 
measurements by {μ1, μ2, ..., μn}. In this example, we collect n = 100 samples. The 
histogram provides a useful visualization of these data. In Figure 2, we display 
three different histograms on a probability scale. The histogram should be flat for a 
uniform sample, but the visual perception varies depending on whether the 
histogram has 10, 5, or 3 bins. The last histogram looks flat, but the other two 
histograms are not obviously flat. It is not clear which histogram we should base 
our conclusion on.
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Figure 1: A physical device that gives samples from a uniform distribution.

If the spinner is fair, then these numbers should follow a uniform distribu-
tion. Spin the arrow n times, and record the measurements by {u1, u2, . . . , un

}.
Collect n = 100 samples. The histogram provides a useful visualization of
these data. In Figure 2, we display three di↵erent histograms on a prob-
ability scale. The histogram should be flat for a uniform sample, but the
visual perception varies whether the histogram has 10, 5, or 3 bins. The last
histogram looks flat, but the other two histograms are not obviously flat.
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Figure 2: Three histograms of a sample of 100 uniform points.
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Figure 2. Three histograms of a sample of 100 uniform points.
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Alternatively, we might use the cumulative distribution function (CDF), which is 
denoted by F(μ). The CDF gives the probability that the spinner gives a value less 
than or equal to μ, that is, the probability that the red arrow lands in the interval [0, 
μ]. By simple arithmetic, F(μ) = μ, which is the diagonal straight line y = x. The 
CDF based upon the sample data is called the empirical CDF (ECDF), is denoted 
by

and is defined to be the fraction of the data less than or equal to μ; that is,

Alternatively, we might use the cumulative distribution function (CDF),
which is denoted by F (u). The CDF gives the probability that the spinner
gives a value less than or equal to u, that is, the probability that the red
arrow lands in the interval [0, u]. By simple arithmetic, F (u) = u, which is
the diagonal straight line y = x. The CDF based upon the sample data is
called the empirical CDF (ECDF), is denoted by F̂

n

(u), and is defined to be
fraction of the data less than or equal to u; that is,

F̂

n

(u) =
# u

i

 u

n

.

In general, the ECDF takes on a ragged staircase appearance.
For the spinner sample analyzed in Figure 2, we computed the ECDF and

CDF, which are displayed in Figure 3. In the left frame, the ECDF appears
close to the line y = x, shown in the middle frame. In the right frame, we
overlay these two curves and verify that they are indeed quite close to each
other. Observe that we do not need to specify the number of bins as with
the histogram.
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Figure 3: The empirical and theoretical cumulative distribution functions of
a sample of 100 uniform points.

3 q-q plot for uniform data

The q-q plot for uniform data is very similar to the empirical cdf graphic,
except with the axes reversed. The q-q plot provides a visual comparison of
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Figure 3. The empirical and theoretical cumulative distribution functions of 
a sample of 100 uniform points.
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q-q plot for uniform data
The q-q plot for uniform data is very similar to the empirical CDF graphic, except 
with the axes reversed. The q-q plot provides a visual comparison of the sample 
quantiles to the corresponding theoretical quantiles. In general, if the points in a q-
q plot depart from a straight line, then the assumed distribution is called into 
question.

Here we define the qth quantile of a batch of n numbers as a number ξq such 
that a fraction q x n of the sample is less than ξq, while a fraction (1 - q) x n of the 
sample is greater than ξq. The best known quantile is the median, ξ0.5, which is 
located in the middle of the sample.

Consider a small sample of 5 numbers from the spinner 

µ1 = 0.41, µ2 = 0.24, µ3 = 0.59, µ4 = 0.03, µ5 =0.67.

Based upon our description of the spinner, we expect a uniform distribution to 
model these data. If the sample data were “perfect,” then on average there would 
be an observation in the middle of each of the 5 intervals: 0 to .2, .2 to .4, .4 to .6, 
and so on. Table 1 shows the 5 data points (sorted in ascending order) and the 
theoretically expected value of each based on the assumption that the distribution 
is uniform (the middle of the interval). 

Table 1. Computing the Expected Quantile Values. 
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on. Table 1 shows the 5 data points (sorted in ascending order) and the theoretically
expected value of each based on the assumption that the distribution is uniform (the
middle of the interval). 

Table 1. Computing the Expected Quantile Values.

Data (μ) Rank (i)
Middle of the ith

Interval
.03
.24
.41
.59
.67

1
2
3
4
5

.1

.3

.5

.7

.9

The theoretical and empirical CDF's are shown in Figure 4 and the q-q plot is shown in
the left frame of Figure 5. 

Figure 4: The theoretical and empirical CDFs of a small sample of 5
uniform points, together with the expected values of the 5 points
(red dots in the right frame).

In general, we consider the full set of sample quantiles to be the sorted data values

µ(1) < µ(2) < µ(3) < !!! < µ(n-1) < µ(n) ,

where the parentheses in the subscript indicate the data have been ordered. Roughly
speaking, we expect the first ordered value to be in the middle of the interval (0, 1/n),
the second to be in the interval (1/n, 2/n), and the last to be in the middle of the
interval ((n - 1)/n, 1). Thus we take as the theoretical quantile the value

Data (µ) Rank (i)
Middle of the 

ith Interval

0.03 1 0.1

0.24 2 0.3

0.41 3 0.5

0.59 4 0.7

0.67 5 0.9
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The theoretical and empirical CDFs are shown in Figure 4 and the q-q plot is 
shown in the left frame of Figure 5. 
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Figure 4: The empirical CDF of a small sample of 5 uniform points, together
with the expected values of the 5 points (red dots in the right frame).

In general, we consider the full set of sample quantiles to be the sorted
data values

u(1) < u(2) < u(3) < · · · < u(n�1) < u(n) ,

where the parentheses in the subscript indicate the data have been ordered.
Roughly speaking, we expect the first ordered value to be in the middle of
the interval (0, 1/n), the second to be in the interval (1/n, 2/n), and the
last to be in the middle of the interval ((n � 1)/n, 1). Thus we take as the
theoretical quantile the value

⇠

q

= q ⇡ i� 0.5

n

,

where q corresponds to the i

th ordered sample value. We subtract the quan-
tity 0.5 so that we are exactly in the middle of the interval ((i� 1)/n, i/n).
These ideas are depicted in the right frame of Figure 4 for our small sample
of size n = 5.

We are now prepared to define the q-q plot precisely. First, we compute
the n expected values of the data, which we pair with the n data points
sorted in ascending order. For the uniform density, the q-q plot is composed
of the n ordered pairs
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where q corresponds to the ith ordered sample value. We subtract the quantity 0.5 
so that we are exactly in the middle of the interval ((i - 1)/n, i/n). These ideas are 
depicted in the right frame of Figure 4 for our small sample of size n = 5.

We are now prepared to define the q-q plot precisely. First, we compute the n 
expected values of the data, which we pair with the n data points sorted in 
ascending order. For the uniform density, the q-q plot is composed of the n ordered 
pairs
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This definition is slightly different from the ECDF, which includes the points (u(i), 
i/n). In the left frame of Figure 5, we display the q-q plot of the 5 points in Table 1. 
In the right two frames of Figure 5, we display the q-q plot of the same batch of 
numbers used in Figure 2. In the final frame, we add the diagonal line y = x as a 
point of reference.
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Figure 5: (Left) q-q plot of the 5 uniform points. (Right) q-q plot of a sample
of 100 uniform points.

The sample size should be taken into account when judging how close the
q-q plot is to the straight line. We show two other uniform samples of size
n = 10 and n = 1000 in Figure 6. Observe that the q-q plot when n = 1000
is almost identical to the line y = x, while such is not the case when the
sample size is only n = 10.
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Figure 6: q-q plot of a sample of 10 and 1000 uniform points.

What if the data are in fact not uniform? In Figure 7 we show the

6

Figure 5. (Left) q-q plot of the 5 uniform points. (Right) q-q plot of a sample 
of 100 uniform points.

The sample size should be taken into account when judging how close the q-q plot 
is to the straight line. We show two other uniform samples of size n = 10 and n = 
1000 in Figure 6. Observe that the q-q plot when n = 1000 is almost identical to the 
line y = x, while such is not the case when the sample size is only n = 10.
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points in Table 1. In the right two frames of Figure 5, we display the q-q plot
of the same batch of numbers used in Figure 2. In the final frame we add
the diagonal line y = x as a point of reference.
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Figure 5: (Left) q-q plot of the 5 uniform points. (Right) q-q plot of a sample
of 100 uniform points.

The sample size should be taken into account when judging how close the
q-q plot is to the straight line. We show two other uniform samples of size
n = 10 and n = 1000 in Figure 6. Observe that the q-q plot when n = 1000
is almost identical to the line y = x, while such is not the case when the
sample size is only n = 10.
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Figure 6: q-q plot of a sample of 10 and 1000 uniform points.

What if the data are in fact not uniform? In Figure 7 we show the
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Figure 6. q-q plots of a sample of 10 and 1000 uniform points.

In Figure 7, we show the q-q plots of two random samples that are not uniform. In 
both examples, the sample quantiles match the theoretical quantiles only at the 
median and at the extremes. Both samples seem to be symmetric around the 
median. But the data in the left frame are closer to the median than would be 
expected if the data were uniform. The data in the right frame are further from the 
median than would be expected if the data were uniform.

q-q plots of two random samples that are not uniform. In both examples,
the sample quantiles match the theoretical quantiles only at the median and
at the extremes. Both samples seem to be symmetric around the median. But
the data in the left frame are closer to the median than would be expected
if the data were uniform. The data in the right frame are further from the
median than would be expected if the data were uniform.
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Figure 7: q-q plots of two samples of size 1000 that are not uniform.

In fact, the data were generated in the R language from beta distributions
with parameters a = b = 3 on the left and a = b = 0.4 on the right. In Figure
8 we display histograms of these two data sets, which serve to clarify the true
shapes of the densities. These are clearly non-uniform.
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Figure 8: Histograms of the two non-uniform data sets.
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Figure 7. q-q plots of two samples of size 1000 that are not uniform.

In fact, the data were generated in the R language from beta distributions with 
parameters a = b = 3 on the left and a = b = 0.4 on the right. In Figure 8 we display 
histograms of these two data sets, which serve to clarify the true shapes of the 
densities. These are clearly non-uniform.
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q-q plots of two random samples that are not uniform. In both examples,
the sample quantiles match the theoretical quantiles only at the median and
at the extremes. Both samples seem to be symmetric around the median. But
the data in the left frame are closer to the median than would be expected
if the data were uniform. The data in the right frame are further from the
median than would be expected if the data were uniform.
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Figure 7: q-q plots of two samples of size 1000 that are not uniform.

In fact, the data were generated in the R language from beta distributions
with parameters a = b = 3 on the left and a = b = 0.4 on the right. In Figure
8 we display histograms of these two data sets, which serve to clarify the true
shapes of the densities. These are clearly non-uniform.
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Figure 8: Histograms of the two non-uniform data sets.
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Figure 8. Histograms of the two non-uniform data sets.

q-q plot for normal data
The definition of the q-q plot may be extended to any continuous density. The q-q 
plot will be close to a straight line if the assumed density is correct. Because the 
cumulative distribution function of the uniform density was a straight line, the q-q 
plot was very easy to construct. For data that are not uniform, the theoretical 
quantiles must be computed in a different manner.

Let {z1, z2, ..., zn} denote a random sample from a normal distribution 
with mean μ = 0 and standard deviation σ = 1. Let the ordered values be 
denoted by

z(1) < z(2) < z(3) < ... < z(n-1) < z(n).

These n ordered values will play the role of the sample quantiles.
Let us consider a sample of 5 values from a distribution to see how they 

compare with what would be expected for a normal distribution. The 5 values in 
ascending order are shown in the first column of Table 2.
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Table 2. Computing the Expected Quantile Values for Normal Data.
 of the Two Non-Uniform Data Sets.

Data (z) Rank (i)
Middle of the ith 

Interval z

-1.96 1 0.1 -1.28

-0.78 2 0.3 -0.52

0.31 3 0.5 0.00

1.15 4 0.7 0.52

1.62 5 0.9 1.28

Just as in the case of the uniform distribution, we have 5 intervals. However, with a 
normal distribution the theoretical quantile is not the middle of the interval but 
rather the inverse of the normal distribution for the middle of the interval. Taking 
the first interval as an example, we want to know the z value such that 0.1 of the 
area in the normal distribution is below z. This can be computed using the Inverse 
Normal Calculator as shown in Figure 9. Simply set the “Shaded Area” field to the 
middle of the interval (0.1) and click on the “Below” button. The result is -1.28. 
Therefore, 10% of the distribution is below a z value of -1.28.
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a normal distribution the theoretical quantile is not the middle of the interval but the
inverse of the normal distribution for the middle. Taking the first interval as an example,
we want to know the z value such that 0.1 of the area in the normal distribution is
below z. This can be computed using the Inverse Normal Calculator as shown in Figure
9. Simply set the “Shaded Area” field to the middle of the interval (0.1) and click on
the “Below” button. The result is -1.28. Therefore, 10% of the distribution is below a z
value of -1.28.

Figure 9. Example of the inverse normal calculator for finding a value
of the expected quantile from a normal distribution.

The q-q plot for the data in Table 2 is shown in the left frame of Figure 11.
In general, what should we take as the corresponding theoretical quanitiles? Let the

cumulative distribution function of the normal density be denoted by Φ(z). In the
previous example, Φ(-1.28) = 0.10 and Φ(0.50) = 0.50. Using the quantile notation, if
ξq is the qth quantile of a normal distribution, then

"(#q)= q.

That is, the probability a normal sample is less than ξq is in fact just q.
Consider the first ordered value z(1). What might we expect the value of Φ(z(1)) to

be? Intuitively, we expect this probability to take on a value in the interval (0, 1/n).
Likewise, we expect Φ(z(2)) to take on a value in the interval (1/n, 2/n). Continuing, we
expect Φ(z(n)) to fall in the interval ((n - 1)/n, 1/n). Thus the theoretical quantile we
desire is defined by the inverse (not reciprocal) of the normal CDF. In particular, the

Figure 9. Example of the Inverse Normal Calculator for finding a value of 
the expected quantile from a normal distribution.

The q-q plot for the data in Table 2 is shown in the left frame of Figure 11.
In general, what should we take as the corresponding theoretical quantiles? 

Let the cumulative distribution function of the normal density be denoted by Φ(z). 
In the previous example, Φ(-1.28) = 0.10 and Φ(0.00) = 0.50. Using the quantile 
notation, if ξq is the qth quantile of a normal distribution, then

Φ(ξq) = q.

That is, the probability a normal sample is less than ξq is in fact just q.
Consider the first ordered value, z(1). What might we expect the value of 

Φ(z(1)) to be? Intuitively, we expect this probability to take on a value in the 
interval (0, 1/n). Likewise, we expect Φ(z(2)) to take on a value in the interval (1/n, 
2/n). Continuing, we expect Φ(z(n)) to fall in the interval ((n - 1)/n, 1/n). Thus, the 
theoretical quantile we desire is defined by the inverse (not reciprocal) of the 
normal CDF. In particular, the theoretical quantile corresponding to the empirical 
quantile z(i) should be
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Figure 9: Example of the inverse normal calculator for finding a value of the
expected quantile from a normal distribution.

In general, what should we take as the corresponding theoretical quan-
tiles? Let the cumulative distribution function of the normal density be
denoted by �(z). In the previous example, �(�1.28) = 0.10 and �(0.00) =
0.50. Using the quantile notation, if ⇠

q

is the q

th quantile of a normal distri-
bution, then

�(⇠
q

) = q .

That is, the probability a normal sample is less than ⇠

q

is in fact just q.
Consider the first ordered value z(1). What might we expect the value

of �(z(1)) to be? Intuitively, we expect this probability to take on a value
in the interval (0, 1/n). Likewise, we expect �(z(2)) to take on a value in
the interval (1/n, 2/n). Continuing, we expect �(z(n)) to fall in the interval
((n � 1)/n, 1/n). Thus the theoretical quantile we desire is defined by the
inverse (not reciprocal) of the normal CDF. In particular, the theoretical
quantile corresponding to the empirical quantile z(i) should be

��1

✓
i� 0.5

n

◆
for i = 1, 2, . . . , n .

The empirical CDF and theoretical quantile construction for the small sample
give in Table 2 are displayed in Figure 10. For the larger sample of size 100,
the first few expected quantiles are -2.576, -2.170, and -1.960.
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The empirical CDF and theoretical quantile construction for the small sample 
given in Table 2 are displayed in Figure 10. For the larger sample of size 100, the 
first few expected quantiles are -2.576, -2.170, and -1.960.
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Figure 10: The empirical CDF of a small sample of 5 normal points, together
with the expected values of the 5 points (red dots in the right frame).

In the left frame of Figure 11, we display the q-q plot of small normal
sample given in Table 2. The remaining frames in Figure 11 display the
q-q plots of normal random samples of size n = 100 and n = 1000. As the
sample size increases, the points in the q-q plots lie closer to the line y = x

as the sample size n increases.
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Figure 11: q-q plots of normal data.

As before, a normal q-q plot can indicate departures from normality. The
two most common examples are skewed data and data with heavy tails (large
kurtosis). In Figure 12 we show normal q-q plots for a chi-squared (skewed)
data set and a Student’s-t (kurtotic) data set, both of size n = 1000. The
data were first standardized. The red line is again y = x. Notice in particular
that the data from the t distribution follow the normal curve fairly closely
until the last dozen or so points on each extreme.
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Figure 10. The empirical CDF of a small sample of 5 normal points, together 
with the expected values of the 5 points (red dots in the right frame).

In the left frame of Figure 11, we display the q-q plot of the small normal sample 
given in Table 2. The remaining frames in Figure 11 display the q-q plots of normal 
random samples of size n = 100 and n = 1000. As the sample size increases, the 
points in the q-q plots lie closer to the line y = x.
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Figure 10: The empirical CDF of a small sample of 5 normal points, together
with the expected values of the 5 points (red dots in the right frame).

In the left frame of Figure 11, we display the q-q plot of small normal
sample given in Table 2. The remaining frames in Figure 11 display the
q-q plots of normal random samples of size n = 100 and n = 1000. As the
sample size increases, the points in the q-q plots lie closer to the line y = x

as the sample size n increases.
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Figure 11: q-q plots of normal data.

As before, a normal q-q plot can indicate departures from normality. The
two most common examples are skewed data and data with heavy tails (large
kurtosis). In Figure 12 we show normal q-q plots for a chi-squared (skewed)
data set and a Student’s-t (kurtotic) data set, both of size n = 1000. The
data were first standardized. The red line is again y = x. Notice in particular
that the data from the t distribution follow the normal curve fairly closely
until the last dozen or so points on each extreme.
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common examples are skewed data and data with heavy tails (large kurtosis). In 
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Figure 12 we show normal q-q plots for a chi-squared (skewed) data set and a 
Student’s-t (kurtotic) data set, both of size n = 1000. The data were first 
standardized. The red line is again y = x. Notice, in particular, that the data from 
the t distribution follow the normal curve fairly closely until the last dozen or so 
points on each extreme.
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Figure 12: q-q plots for standardized non-normal data (n = 1000).

5 q-q plots for normal data with general mean

and scale

Why did we standardize the data in Figure 12? The q-q plot is comprised of
the n points
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} are normal, but have an arbitrary mean µ and stan-
dard deviation �, then the line y = x will not match the expected theoretical
quantile. Clearly the linear transformation
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q

would provide the q

th theoretical quantile on the transformed scale. In prac-
tice, with a new data set
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Figure 12. q-q plots for standardized non-normal data (n = 1000).

q-q plots for normal data with general mean and scale
Our previous discussion of q-q plots for normal data all assumed that our data were 
standardized. One approach to constructing q-q plots is to first standardize the data 
and then proceed as described previously. An alternative is to construct the plot 
directly from raw data.

In this section we present a general approach for data that are not 
standardized. Why did we standardize the data in Figure 12? The q-q plot is 
comprised of the n points
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Figure 12: q-q plots for standardized non-normal data (n = 1000).

5 q-q plots for normal data with general mean

and scale

Why did we standardize the data in Figure 12? The q-q plot is comprised of
the n points

✓
��1

✓
i� 0.5

n

◆
, z(i)

◆
for i = 1, 2, . . . , n .

If the original data {z
i

} are normal, but have an arbitrary mean µ and stan-
dard deviation �, then the line y = x will not match the expected theoretical
quantile. Clearly the linear transformation

µ + � · ⇠
q

would provide the q

th theoretical quantile on the transformed scale. In prac-
tice, with a new data set

{x1, x2, . . . , xn

} ,

the normal q-q plot would consist of the n points
✓

��1

✓
i� 0.5

n

◆
, x(i)

◆
for i = 1, 2, . . . , n .

Instead of plotting the line y = x as a reference line, the line

y = x̄ + s · x

11

If the original data {zi} are normal, but have an arbitrary mean μ and standard 
deviation σ, then the line y = x will not match the expected theoretical quantile. 
Clearly, the linear transformation

285



µ + σ ξq

would provide the qth theoretical quantile on the transformed scale. In practice, 
with a new data set

{x1,x2,...,xn} ,

the normal q-q plot would consist of the n points

Instead of plotting the line y = x as a reference line, the line

y = M + s · x

should be composed, where M and s are the sample moments (mean and standard 
deviation) corresponding to the theoretical moments μ and σ. Alternatively, if the 
data are standardized, then the line y = x would be appropriate, since now the 
sample mean would be 0 and the sample standard deviation would be 1.

Example: SAT Case Study
The SAT case study followed the academic achievements of 105 college students 
majoring in computer science. The first variable is their verbal SAT score and the 
second is their grade point average (GPA) at the university level. Before we 
compute inferential statistics using these variables, we should check if their 
distributions are normal. In Figure 13, we display the q-q plots of the verbal SAT 
and university GPA variables.
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should be composed, where x̄ and s are the sample moments corresponding to
the theoretical moments µ and �. Alternatively, if the data are standardized,
then the line y = x would be appropriate, since now the sample mean would
be 0 and the sample standard deviation would be 1.

As an example, we re-examine the SAT case study that followed the
academic achievements of 105 college students. The first variable is their
verbal SAT score and the second is their grade point average (GPA) at the
university level. Before we compute a correlation coe�cient, we should check
if the distributions of the two variables are both normal. In Figure 13, we
display the q-q plots of the verbal SAT and university GPA variables.

●
●

● ●●●●
●●●

●●
●●

●●

●●●●●
●●●●●

●●●●
●●
●
●●

●●

●●
●●●●●

●●●
●●●●●●●

●●●●
●●●●●●●●

●
●●●●
●●●

●

●●●
●
●●●●

●

●

●●

●●●●●
●●●

●
●●

●

●●
●

●
●

●

−2 −1 0 1 2

500

550

600

650

700

Theoretical quantile

Sa
m

pl
e 

qu
an

til
e

Verbal SAT

●

●
● ●●

●
●

●●●
●●●

●●●●

●
●

●
●

●

●

●●●●
●

●●●
●

●●●●
●●●●
●
●●
●●●●●●●●●●

●●
●
●●●●●

●●●●●
●●●●●●●●

●
●●●●●

●●●
●●●●

●
●●●●

●●●
●
●●●

●●●
●

●

●

−2 −1 0 1 2

2.25

2.50

2.75

3.00

3.25

3.50

3.75
GPA

Figure 13: q-q plots for the student data (n = 105).

The verbal SAT seems to follow a normal distribution reasonably well,
except in the extreme tails. However, the university GPA variable is highly
non-normal. Compare the GPA q-q plot to the simulation in the right frame
of Figure 7. These figures are very similar, except for the region where
x ⇡ �1. To follow these ideas, we computed histograms of the variables and
their scatter diagram in Figure 14. These figures tell quite a di↵erent story.
The university GPA is bimodal, with about 20% of the students falling into
a separate cluster with a grade of C. The scatter diagram is quite unusual.
While the students in this cluster all have below average verbal SAT scores,
there are as many students with low SAT scores whose GPA’s were quite
respectable. We might speculate as to the cause(s): di↵erent majors, di↵erent
study habits, but it would only be speculation. But observe that the raw
correlation between verbal SAT and GPA is a rather high 0.65, but when we
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Figure 13. q-q plots for the student data (n = 105).

The verbal SAT seems to follow a normal distribution reasonably well, except in 
the extreme tails. However, the university GPA variable is highly non-normal. 
Compare the GPA q-q plot to the simulation in the right frame of Figure 7. These 
figures are very similar, except for the region where x ≈ -1. To follow these ideas, 
we computed histograms of the variables and their scatter diagram in Figure 14. 
These figures tell quite a different story. The university GPA is bimodal, with about 
20% of the students falling into a separate cluster with a grade of C. The scatter 
diagram is quite unusual. While the students in this cluster all have below average 
verbal SAT scores, there are as many students with low SAT scores whose GPAs 
were quite respectable. We might speculate as to the cause(s): different 
distractions, different study habits, but it would only be speculation. But observe 
that the raw correlation between verbal SAT and GPA is a rather high 0.65, but 
when we exclude the cluster, the correlation for the remaining 86 students falls a 
little to 0.59.
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exclude the cluster, the correlation for the remaining 86 students falls a little
to 0.59.
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Figure 14: Histograms and scatter diagram of the verbal SAT and GPA
variables for the 105 students.

6 Discussion

Parametric modeling usually involves making assumptions about the shape
of data, or the shape of residuals from a regression fit. Verifying such assump-
tions can take many forms, but an exploration of the shape using histograms
and q-q plots are very e↵ective. The q-q plot does not have any design pa-
rameters such as the number of bins for a histogram.

In an advanced course, the q-q plot can be used to formally test the
null hypothesis that the data are normal. This is done by computing the
correlation coe�cient of the n points in the q-q plot. Depending upon n, the
null hypothesis is rejected if the correlation coe�cient is less than a threshold.
The threshold is already quite close to 0.95 for modest sample sizes.

We have seen that the q-q plot for uniform data is very close related to
the empirical cumulative distribution function. For general density functions,
the so-called probability integral transform takes a random variable X and
maps it to the interval (0, 1) through the CDF of X itself, that is,

Y = F

X

(X)

which has been shown to be a uniform density. This explains why the q-q plot
on standardized data is always close to the line y = x when the model is
correct.

13

Figure 14. Histograms and scatter diagram of the verbal SAT and GPA 
variables for the 105 students.

Discussion
Parametric modeling usually involves making assumptions about the shape of data, 
or the shape of residuals from a regression fit. Verifying such assumptions can take 
many forms, but an exploration of the shape using histograms and q-q plots is very 
effective. The q-q plot does not have any design parameters such as the number of 
bins for a histogram.

In an advanced treatment, the q-q plot can be used to formally test the null 
hypothesis that the data are normal. This is done by computing the correlation 
coefficient of the n points in the q-q plot. Depending upon n, the null hypothesis is 
rejected if the correlation coefficient is less than a threshold. The threshold is 
already quite close to 0.95 for modest sample sizes.

We have seen that the q-q plot for uniform data is very closely related to the 
empirical cumulative distribution function. For general density functions, the so-
called probability integral transform takes a random variable X and maps it to the 
interval (0, 1) through the CDF of X itself, that is,

Y = FX(X)

which has been shown to be a uniform density. This explains why the q-q plot on 
standardized data is always close to the line y = x when the model is correct. 
Finally, scientists have used special graph paper for years to make relationships 
linear (straight lines). The most common example used to be semi-log paper, on 
which points following the formula y = aebx appear linear. This follows of course 
since log(y) = log(a) + bx, which is the equation for a straight line. The q-q plots 
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may be thought of as being “probability graph paper” that makes a plot of the 
ordered data values into a straight line. Every density has its own special 
probability graph paper.
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Contour Plots
by David Lane

Prerequisites
• none

Learning Objectives
1. Describe a contour plot.
2. Interpret a contour plot

Contour plots portray data for three variables in two dimensions. The plot contains 
a number of contour lines. Each contour line is shown in an X-Y plot and has a 
constant value on a third variable. Consider the Figure 1 that contains data on the 
fat, non-sugar carbohydrates, and calories present in a variety of breakfast cereals. 
Each line shows the carbohydrate and fat levels for cereals with the same number 
of calories. Note that the number of calories is not determined exactly by the fat 
and non-sugar carbohydrates since cereals also differ in sugar and protein. 
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Figure 1. A contour plot showing calories as a function of fat and 
carbohydrates.

An alternative way to draw the plot is shown in Figure 2. The areas with the same 
number of calories are shaded.
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cereal contour: Contour Plot of Calories Page 1 of 2
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Contour Plot for Calories

Figure 2. A contour plot showing calories as a function of fat and 
carbohydrates with areas shaded. An area represents values less than 
or equal to the label to the right of the area.
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3D Plots
by David Lane

Prerequisites
• Chapter 4: Introduction to Bivariate Data

Learning Objectives
1. Describe a 3D Plot.
2. Give an example of the value of a 3D plot.

Just as two-dimensional scatter plots show the data in two dimensions, 3D plots 
show data in three dimensions. Figure 1 shows a 3D scatter plot of the fat, non-
sugar carbohydrates, and calories from a variety of cereal types.

Figure 1. A 3D scatter plot showing fat, non-sugar carbohydrates, and 
calories from a variety of cereal types.
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Many statistical packages allow you to rotate the axes interactively to view the data 
from a different vantage point. Figure 2 is an example.

Figure 2. An alternative 3D scatter plot showing fat, non-sugar 
carbohydrates, and calories.

A fourth dimension can be represented as long as it is represented as a nominal 
variable. Figure 3 represents the different manufacturers by using different colors.
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Figure 3. The different manufacturers are color coded.

Interactively rotating 3D plots can sometimes reveal aspects of the data not 
otherwise apparent. Figure 4 shows data from a pseudo random number generator. 
Figure 4 does not show anything systematic and the random number generator 
appears to generate data with properties similar to those of true random numbers.
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Figure 4. A 3D scatter plot showing 400 values of X, Y, and Z from a pseudo 
random number generator.

Figure 5 shows a different perspective on these data. Clearly they were not 
generated by a random process.
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Figure 5. A different perspective on the 3D scatter plot showing 400 values 
of X, Y, and Z from a pseudo random number generator. 

Figures 4 and 5 are reproduced with permission from R snippets by Bogumil 
Kaminski.
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Statistical Literacy
by David M. Lane

Prerequisites
• Chapter 8: Contour Plots

This web page portrays altitudes in the United States.

What do you think?
What part of the state of Texas (North, South, East, or West) contains the highest 
elevation?

West Texas
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Exercises
1. What are Q-Q plots useful for?
2. For the following data, plot the theoretically expected z score as a function of 
the actual z score (a Q-Q plot).
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3. For the data in problem 2, describe how the data differ from a normal 
distribution.

4. For the “SAT and College GPA” case study data, create a contour plot looking at 
College GPA as a function of Math SAT and High School GPA. Naturally, you 
should use a computer to do this.
5. For the “SAT and College GPA” case study data, create a 3D plot using the 
variables College GPA, Math SAT, and High School GPA. Naturally, you should 
use a computer to do this.
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