
1. Introduction

This chapter begins by discussing what statistics are and why the study of statistics 
is important. Subsequent sections cover a variety of topics all basic to the study of 
statistics. The only theme common to all of these sections is that they cover 
concepts and ideas important for other chapters in the book.

A. What are Statistics?
B. Importance of Statistics
C. Descriptive Statistics
D. Inferential Statistics
E. Variables
F. Percentiles
G. Measurement
H. Levels of Measurement
I. Distributions
J. Summation Notation
K. Linear Transformations
L. Logarithms
M. Exercises
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What Are Statistics
by Mikki Hebl

Learning Objectives
1. Describe the range of applications of statistics
2. Identify situations in which statistics can be misleading
3. Define “Statistics”

Statistics include numerical facts and figures. For instance:

• The largest earthquake measured 9.2 on the Richter scale.

• Men are at least 10 times more likely than women to commit murder.

• One in every 8 South Africans is HIV positive.

• By the year 2020, there will be 15 people aged 65 and over for every new baby 
born.

The study of statistics involves math and relies upon calculations of numbers. But 
it also relies heavily on how the numbers are chosen and how the statistics are 
interpreted. For example, consider the following three scenarios and the 
interpretations based upon the presented statistics. You will find that the numbers 
may be right, but the interpretation may be wrong. Try to identify a major flaw 
with each interpretation before we describe it.

1) A new advertisement for Ben and Jerry's ice cream introduced in 
late May of last year resulted in a 30% increase in ice cream sales for 
the following three months. Thus, the advertisement was effective.

A major flaw is that ice cream consumption generally increases in the 
months of June, July, and August regardless of advertisements. This 
effect is called a history effect and leads people to interpret outcomes 
as the result of one variable when another variable (in this case, one 
having to do with the passage of time) is actually responsible. 

2) The more churches in a city, the more crime there is. Thus, 
churches lead to crime.
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A major flaw is that both increased churches and increased crime rates 
can be explained by larger populations. In bigger cities, there are both 
more churches and more crime. This problem, which we will discuss 
in more detail in Chapter 6, refers to the third-variable problem. 
Namely, a third variable can cause both situations; however, people 
erroneously believe that there is a causal relationship between the two 
primary variables rather than recognize that a third variable can cause 
both. 

3) 75% more interracial marriages are occurring this year than 25 
years ago. Thus, our society accepts interracial marriages.

A major flaw is that we don't have the information that we need. What 
is the rate at which marriages are occurring? Suppose only 1% of 
marriages 25 years ago were interracial and so now 1.75% of 
marriages are interracial (1.75 is 75% higher than 1). But this latter 
number is hardly evidence suggesting the acceptability of interracial 
marriages. In addition, the statistic provided does not rule out the 
possibility that the number of interracial marriages has seen dramatic 
fluctuations over the years and this year is not the highest. Again, 
there is simply not enough information to understand fully the impact 
of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they 
are something more than that. In the broadest sense, “statistics” refers to a range of 
techniques and procedures for analyzing, interpreting, displaying, and making 
decisions based on data.
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Importance of  Statistics
by Mikki Hebl

Learning Objectives
1. Give examples of statistics encountered in everyday life
2. Give examples of how statistics can lend credibility to an argument
Like most people, you probably feel that it is important to “take control of your 
life.” But what does this mean? Partly, it means being able to properly evaluate the 
data and claims that bombard you every day. If you cannot distinguish good from 
faulty reasoning, then you are vulnerable to manipulation and to decisions that are 
not in your best interest. Statistics provides tools that you need in order to react 
intelligently to information you hear or read. In this sense, statistics is one of the 
most important things that you can study.

To be more specific, here are some claims that we have heard on several 
occasions. (We are not saying that each one of these claims is true!)
• 4 out of 5 dentists recommend Dentine.
• Almost 85% of lung cancers in men and 45% in women are tobacco-related.
• Condoms are effective 94% of the time.
• Native Americans are significantly more likely to be hit crossing the street than 

are people of other ethnicities.
• People tend to be more persuasive when they look others directly in the eye and 

speak loudly and quickly.
• Women make 75 cents to every dollar a man makes when they work the same 

job.
• A surprising new study shows that eating egg whites can increase one's life span.
• People predict that it is very unlikely there will ever be another baseball player 

with a batting average over 400.
• There is an 80% chance that in a room full of 30 people that at least two people 

will share the same birthday.
• 79.48% of all statistics are made up on the spot.
All of these claims are statistical in character. We suspect that some of them sound 
familiar; if not, we bet that you have heard other claims like them. Notice how 
diverse the examples are. They come from psychology, health, law, sports, 
business, etc. Indeed, data and data interpretation show up in discourse from 
virtually every facet of contemporary life.
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Statistics are often presented in an effort to add credibility to an argument or 
advice. You can see this by paying attention to television advertisements. Many of 
the numbers thrown about in this way do not represent careful statistical analysis. 
They can be misleading and push you into decisions that you might find cause to 
regret. For these reasons, learning about statistics is a long step towards taking 
control of your life. (It is not, of course, the only step needed for this purpose.) The 
present electronic textbook is designed to help you learn statistical essentials. It 
will make you into an intelligent consumer of statistical claims.

You can take the first step right away. To be an intelligent consumer of 
statistics, your first reflex must be to question the statistics that you encounter. The 
British Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said, 
“There are three kinds of lies -- lies, damned lies, and statistics.” This quote 
reminds us why it is so important to understand statistics. So let us invite you to 
reform your statistical habits from now on. No longer will you blindly accept 
numbers or findings. Instead, you will begin to think about the numbers, their 
sources, and most importantly, the procedures used to generate them.

We have put the emphasis on defending ourselves against fraudulent claims 
wrapped up as statistics. We close this section on a more positive note. Just as 
important as detecting the deceptive use of statistics is the appreciation of the 
proper use of statistics. You must also learn to recognize statistical evidence that 
supports a stated conclusion. Statistics are all around you, sometimes used well, 
sometimes not. We must learn how to distinguish the two cases.
 
Now let us get to work!
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Descriptive Statistics
by Mikki Hebl

Prerequisites
• none

Learning Objectives
1. Define “descriptive statistics”
2. Distinguish between descriptive statistics and inferential statistics
Descriptive statistics are numbers that are used to summarize and describe data. 
The word “data” refers to the information that has been collected from an 
experiment, a survey, an historical record, etc. (By the way, “data” is plural. One 
piece of information is called a “datum.”) If we are analyzing birth certificates, for 
example, a descriptive statistic might be the percentage of certificates issued in 
New York State, or the average age of the mother. Any other number we choose to 
compute also counts as a descriptive statistic for the data from which the statistic is 
computed. Several descriptive statistics are often used at one time to give a full 
picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing 
beyond the data at hand. Generalizing from our data to another set of cases is the 
business of inferential statistics, which you'll be studying in another section. Here 
we focus on (mere) descriptive statistics.

Some descriptive statistics are shown in Table 1. The table shows the 
average salaries for various occupations in the United States in 1999. 
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Table 1. Average salaries for various occupations in 1999.

$112,760 pediatricians

$106,130 dentists

$100,090 podiatrists

$76,140 physicists

$53,410 architects,

$49,720 school, clinical, and counseling 
psychologists

$47,910 flight attendants

$39,560 elementary school teachers

$38,710 police officers

$18,980 floral designers

Descriptive statistics like these offer insight into American society. It is interesting 
to note, for example, that we pay the people who educate our children and who 
protect our citizens a great deal less than we pay people who take care of our feet 
or our teeth.

For more descriptive statistics, consider Table 2. It shows the number of 
unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. From this 
table we see that men outnumber women most in Jacksonville, NC, and women 
outnumber men most in Sarasota, FL. You can see that descriptive statistics can be 
useful if we are looking for an opposite-sex partner! (These data come from the 
Information Please Almanac.)

Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas 
in 1990.

Cities with mostly 
men

Men per 100 
Women

Cities with mostly 
women

Men per 100 
Women

1. Jacksonville, NC 224 1. Sarasota, FL 66

2. Killeen-Temple, TX 123 2. Bradenton, FL 68

3. Fayetteville, NC 118 3. Altoona, PA 69
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4. Brazoria, TX 117 4. Springfield, IL 70

5. Lawton, OK 116 5. Jacksonville, TN 70

6. State College, PA 113 6. Gadsden, AL 70

7. Clarksville-
Hopkinsville, TN-KY

113 7. Wheeling, WV 70

8. Anchorage, Alaska 112 8. Charleston, WV 71

9. Salinas-Seaside-
Monterey, CA

112 9. St. Joseph, MO 71

10. Bryan-College 
Station, TX

111 10. Lynchburg, VA 71

NOTE: Unmarried includes never-married, widowed, and divorced persons, 15 years or older.

These descriptive statistics may make us ponder why the numbers are so disparate 
in these cities. One potential explanation, for instance, as to why there are more 
women in Florida than men may involve the fact that elderly individuals tend to 
move down to the Sarasota region and that women tend to outlive men. Thus, more 
women might live in Sarasota than men. However, in the absence of proper data, 
this is only speculation.

You probably know that descriptive statistics are central to the world of 
sports. Every sporting event produces numerous statistics such as the shooting 
percentage of players on a basketball team. For the Olympic marathon (a foot race 
of 26.2 miles), we possess data that cover more than a century of competition. (The 
first modern Olympics took place in 1896.) The following table shows the winning 
times for both men and women (the latter have only been allowed to compete since 
1984).

Table 3. Winning Olympic marathon times.

WomenWomenWomenWomen

Year Winner Country Time

1984 Joan Benoit USA 2:24:52

1988 Rosa Mota POR 2:25:40
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1992 Valentina Yegorova UT 2:32:41

1996 Fatuma Roba ETH 2:26:05

2000 Naoko Takahashi JPN 2:23:14

2004 Mizuki Noguchi JPN 2:26:20

MenMenMenMen

Year Winner Country Time

1896 Spiridon Louis GRE 2:58:50

1900 Michel Theato FRA 2:59:45

1904 Thomas Hicks USA 3:28:53

1906 Billy Sherring CAN 2:51:23

1908 Johnny Hayes USA 2:55:18

1912 Kenneth McArthur S. Afr. 2:36:54

1920 Hannes Kolehmainen FIN 2:32:35

1924 Albin Stenroos FIN 2:41:22

1928 Boughra El Ouafi FRA 2:32:57

1932 Juan Carlos Zabala ARG 2:31:36

1936 Sohn Kee-Chung JPN 2:29:19

1948 Delfo Cabrera ARG 2:34:51

1952 Emil Ztopek CZE 2:23:03

1956 Alain Mimoun FRA 2:25:00

1960 Abebe Bikila ETH 2:15:16

1964 Abebe Bikila ETH 2:12:11

1968 Mamo Wolde ETH 2:20:26

1972 Frank Shorter USA 2:12:19

1976 Waldemar Cierpinski E.Ger 2:09:55

1980 Waldemar Cierpinski E.Ger 2:11:03

1984 Carlos Lopes POR 2:09:21

1988 Gelindo Bordin ITA 2:10:32
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1992 Hwang Young-Cho S. Kor 2:13:23

1996 Josia Thugwane S. Afr. 2:12:36

2000 Gezahenge Abera ETH 2:10.10

2004 Stefano Baldini ITA 2:10:55

There are many descriptive statistics that we can compute from the data in the 
table. To gain insight into the improvement in speed over the years, let us divide 
the men's times into two pieces, namely, the first 13 races (up to 1952) and the 
second 13 (starting from 1956). The mean winning time for the first 13 races is 2 
hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for 
the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does 
this prove that the fastest men are running faster? Or is the difference just due to 
chance, no more than what often emerges from chance differences in performance 
from year to year? We can't answer this question with descriptive statistics alone. 
All we can affirm is that the two means are “suggestive.”

Examining Table 3 leads to many other questions. We note that Takahashi 
(the lead female runner in 2000) would have beaten the male runner in 1956 and all 
male runners in the first 12 marathons. This fact leads us to ask whether the gender 
gap will close or remain constant. When we look at the times within each gender, 
we also wonder how far they will decrease (if at all) in the next century of the 
Olympics. Might we one day witness a sub-2 hour marathon? The study of 
statistics can help you make reasonable guesses about the answers to these 
questions.
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Inferential Statistics
by Mikki Hebl

Prerequisites
• Chapter 1: Descriptive Statistics 

Learning Objectives
1. Distinguish between a sample and a population
2. Define inferential statistics
3. Identify biased samples
4. Distinguish between simple random sampling and stratified sampling
5. Distinguish between random sampling and random assignment

Populations and samples
In statistics, we often rely on a sample --- that is, a small subset of a larger set of 
data --- to draw inferences about the larger set. The larger set is known as the 
population from which the sample is drawn.

Example #1: You have been hired by the National Election Commission to 
examine how the American people feel about the fairness of the voting 
procedures in the U.S. Who will you ask?

It is not practical to ask every single American how he or she feels about the 
fairness of the voting procedures. Instead, we query a relatively small number of 
Americans, and draw inferences about the entire country from their responses. The 
Americans actually queried constitute our sample of the larger population of all 
Americans. The mathematical procedures whereby we convert information about 
the sample into intelligent guesses about the population fall under the rubric of 
inferential statistics.

A sample is typically a small subset of the population. In the case of voting 
attitudes, we would sample a few thousand Americans drawn from the hundreds of 
millions that make up the country. In choosing a sample, it is therefore crucial that 
it not over-represent one kind of citizen at the expense of others. For example, 
something would be wrong with our sample if it happened to be made up entirely 
of Florida residents. If the sample held only Floridians, it could not be used to infer 
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the attitudes of other Americans. The same problem would arise if the sample were 
comprised only of Republicans. Inferential statistics are based on the assumption 
that sampling is random. We trust a random sample to represent different segments 
of society in close to the appropriate proportions (provided the sample is large 
enough; see below).

Example #2: We are interested in examining how many math classes have 
been taken on average by current graduating seniors at American colleges 
and universities during their four years in school. Whereas our population in 
the last example included all US citizens, now it involves just the graduating 
seniors throughout the country. This is still a large set since there are 
thousands of colleges and universities, each enrolling many students. (New 
York University, for example, enrolls 48,000 students.) It would be 
prohibitively costly to examine the transcript of every college senior. We 
therefore take a sample of college seniors and then make inferences to the 
entire population based on what we find. To make the sample, we might first 
choose some public and private colleges and universities across the United 
States. Then we might sample 50 students from each of these institutions. 
Suppose that the average number of math classes taken by the people in our 
sample were 3.2. Then we might speculate that 3.2 approximates the number 
we would find if we had the resources to examine every senior in the entire 
population. But we must be careful about the possibility that our sample is 
non-representative of the population. Perhaps we chose an overabundance of 
math majors, or chose too many technical institutions that have heavy math 
requirements. Such bad sampling makes our sample unrepresentative of the 
population of all seniors.

To solidify your understanding of sampling bias, consider the following 
example. Try to identify the population and the sample, and then reflect on 
whether the sample is likely to yield the information desired.
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Example #3: A substitute teacher wants to know how students in the class 
did on their last test. The teacher asks the 10 students sitting in the front row 
to state their latest test score. He concludes from their report that the class 
did extremely well. What is the sample? What is the population? Can you 
identify any problems with choosing the sample in the way that the teacher 
did?

In Example #3, the population consists of all students in the class. The sample is 
made up of just the 10 students sitting in the front row. The sample is not likely to 
be representative of the population. Those who sit in the front row tend to be more 
interested in the class and tend to perform higher on tests. Hence, the sample may 
perform at a higher level than the population.

Example #4: A coach is interested in how many cartwheels the average 
college freshmen at his university can do. Eight volunteers from the 
freshman class step forward. After observing their performance, the coach 
concludes that college freshmen can do an average of 16 cartwheels in a row 
without stopping.

In Example #4, the population is the class of all freshmen at the coach's university. 
The sample is composed of the 8 volunteers. The sample is poorly chosen because 
volunteers are more likely to be able to do cartwheels than the average freshman; 
people who can't do cartwheels probably did not volunteer! In the example, we are 
also not told of the gender of the volunteers. Were they all women, for example? 
That might affect the outcome, contributing to the non-representative nature of the 
sample (if the school is co-ed).

Simple Random Sampling
Researchers adopt a variety of sampling strategies. The most straightforward is 
simple random sampling. Such sampling requires every member of the population 
to have an equal chance of being selected into the sample. In addition, the selection 
of one member must be independent of the selection of every other member. That 
is, picking one member from the population must not increase or decrease the 
probability of picking any other member (relative to the others). In this sense, we 
can say that simple random sampling chooses a sample by pure chance. To check 
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your understanding of simple random sampling, consider the following example. 
What is the population? What is the sample? Was the sample picked by simple 
random sampling? Is it biased?

Example #5: A research scientist is interested in studying the experiences of 
twins raised together versus those raised apart. She obtains a list of twins 
from the National Twin Registry, and selects two subsets of individuals for 
her study. First, she chooses all those in the registry whose last name begins 
with Z. Then she turns to all those whose last name begins with B. Because 
there are so many names that start with B, however, our researcher decides 
to incorporate only every other name into her sample. Finally, she mails out 
a survey and compares characteristics of twins raised apart versus together.

In Example #5, the population consists of all twins recorded in the National Twin 
Registry. It is important that the researcher only make statistical generalizations to 
the twins on this list, not to all twins in the nation or world. That is, the National 
Twin Registry may not be representative of all twins. Even if inferences are limited 
to the Registry, a number of problems affect the sampling procedure we described. 
For instance, choosing only twins whose last names begin with Z does not give 
every individual an equal chance of being selected into the sample. Moreover, such 
a procedure risks over-representing ethnic groups with many surnames that begin 
with Z. There are other reasons why choosing just the Z's may bias the sample. 
Perhaps such people are more patient than average because they often find 
themselves at the end of the line! The same problem occurs with choosing twins 
whose last name begins with B. An additional problem for the B's is that the 
“every-other-one” procedure disallowed adjacent names on the B part of the list 
from being both selected. Just this defect alone means the sample was not formed 
through simple random sampling.

Sample size matters
Recall that the definition of a random sample is a sample in which every member 
of the population has an equal chance of being selected. This means that the 
sampling procedure rather than the results of the procedure define what it means 
for a sample to be random. Random samples, especially if the sample size is small, 
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are not necessarily representative of the entire population. For example, if a 
random sample of 20 subjects were taken from a population with an equal number 
of males and females, there would be a nontrivial probability (0.06) that 70% or 
more of the sample would be female. (To see how to obtain this probability, see the 
section on the binomial distribution in Chapter 5.) Such a sample would not be 
representative, although it would be drawn randomly. Only a large sample size 
makes it likely that our sample is close to representative of the population. For this 
reason, inferential statistics take into account the sample size when generalizing 
results from samples to populations. In later chapters, you'll see what kinds of 
mathematical techniques ensure this sensitivity to sample size.

More complex sampling
Sometimes it is not feasible to build a sample using simple random sampling. To 
see the problem, consider the fact that both Dallas and Houston are competing to 
be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most 
Texans prefer Houston to Dallas as the host, or the reverse. Given the 
impracticality of obtaining the opinion of every single Texan, you must construct a 
sample of the Texas population. But now notice how difficult it would be to 
proceed by simple random sampling. For example, how will you contact those 
individuals who don’t vote and don’t have a phone? Even among people you find 
in the telephone book, how can you identify those who have just relocated to 
California (and had no reason to inform you of their move)? What do you do about 
the fact that since the beginning of the study, an additional 4,212 people took up 
residence in the state of Texas? As you can see, it is sometimes very difficult to 
develop a truly random procedure. For this reason, other kinds of sampling 
techniques have been devised. We now discuss two of them.

Random assignment
In experimental research, populations are often hypothetical. For example, in an 
experiment comparing the effectiveness of a new anti-depressant drug with a 
placebo, there is no actual population of individuals taking the drug. In this case, a 
specified population of people with some degree of depression is defined and a 
random sample is taken from this population. The sample is then randomly divided 
into two groups; one group is assigned to the treatment condition (drug) and the 
other group is assigned to the control condition (placebo). This random division of 
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the sample into two groups is called random assignment. Random assignment is 
critical for the validity of an experiment. For example, consider the bias that could 
be introduced if the first 20 subjects to show up at the experiment were assigned to 
the experimental group and the second 20 subjects were assigned to the control 
group. It is possible that subjects who show up late tend to be more depressed than 
those who show up early, thus making the experimental group less depressed than 
the control group even before the treatment was administered.

In experimental research of this kind, failure to assign subjects randomly to 
groups is generally more serious than having a non-random sample. Failure to 
randomize (the former error) invalidates the experimental findings. A non-random 
sample (the latter error) simply restricts the generalizability of the results.

Stratified Sampling
Since simple random sampling often does not ensure a representative sample, a 
sampling method called stratified random sampling is sometimes used to make the 
sample more representative of the population. This method can be used if the 
population has a number of distinct “strata” or groups. In stratified sampling, you 
first identify members of your sample who belong to each group. Then you 
randomly sample from each of those subgroups in such a way that the sizes of the 
subgroups in the sample are proportional to their sizes in the population.

Let's take an example: Suppose you were interested in views of capital 
punishment at an urban university. You have the time and resources to interview 
200 students. The student body is diverse with respect to age; many older people 
work during the day and enroll in night courses (average age is 39), while younger 
students generally enroll in day classes (average age of 19). It is possible that night 
students have different views about capital punishment than day students. If 70% 
of the students were day students, it makes sense to ensure that 70% of the sample 
consisted of day students. Thus, your sample of 200 students would consist of 140 
day students and 60 night students. The proportion of day students in the sample 
and in the population (the entire university) would be the same. Inferences to the 
entire population of students at the university would therefore be more secure.
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Variables
by Heidi Ziemer

Prerequisites
•none

Learning Objectives
1. Define and distinguish between independent and dependent variables
2. Define and distinguish between discrete and continuous variables
3. Define and distinguish between qualitative and quantitative variables

Independent and dependent variables
Variables are properties or characteristics of some event, object, or person that can 
take on different values or amounts (as opposed to constants such as π that do not 
vary). When conducting research, experimenters often manipulate variables. For 
example, an experimenter might compare the effectiveness of four types of 
antidepressants. In this case, the variable is “type of antidepressant.” When a 
variable is manipulated by an experimenter, it is called an independent variable. 
The experiment seeks to determine the effect of the independent variable on relief 
from depression. In this example, relief from depression is called a dependent 
variable. In general, the independent variable is manipulated by the experimenter 
and its effects on the dependent variable are measured.

Example #1: Can blueberries slow down aging? A study indicates that 
antioxidants found in blueberries may slow down the process of aging. In 
this study, 19-month-old rats (equivalent to 60-year-old humans) were fed 
either their standard diet or a diet supplemented by either blueberry, 
strawberry, or spinach powder. After eight weeks, the rats were given 
memory and motor skills tests. Although all supplemented rats showed 
improvement, those supplemented with blueberry powder showed the most 
notable improvement. 

1. What is the independent variable? (dietary supplement: none, blueberry, 
strawberry, and spinach)
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2. What are the dependent variables? (memory test and motor skills test) 

Example #2: Does beta-carotene protect against cancer? Beta-carotene 
supplements have been thought to protect against cancer. However, a study 
published in the Journal of the National Cancer Institute suggests this is 
false. The study was conducted with 39,000 women aged 45 and up. These 
women were randomly assigned to receive a beta-carotene supplement or a 
placebo, and their health was studied over their lifetime. Cancer rates for 
women taking the beta-carotene supplement did not differ systematically 
from the cancer rates of those women taking the placebo. 

1. What is the independent variable? (supplements: beta-carotene or 
placebo)

2. What is the dependent variable? (occurrence of cancer)

Example #3: How bright is right? An automobile manufacturer wants to 
know how bright brake lights should be in order to minimize the time 
required for the driver of a following car to realize that the car in front is 
stopping and to hit the brakes.

1. What is the independent variable? (brightness of brake lights)

2. What is the dependent variable? (time to hit brakes)

Levels of an Independent Variable
If an experiment compares an experimental treatment with a control treatment, 
then the independent variable (type of treatment) has two levels: experimental and 
control. If an experiment were comparing five types of diets, then the independent 
variable (type of diet) would have 5 levels. In general, the number of levels of an 
independent variable is the number of experimental conditions.
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Qualitative and Quantitative Variables
An important distinction between variables is between qualitative variables and 
quantitative variables. Qualitative variables are those that express a qualitative 
attribute such as hair color, eye color, religion, favorite movie, gender, and so on. 
The values of a qualitative variable do not imply a numerical ordering. Values of 
the variable “religion” differ qualitatively; no ordering of religions is implied. 
Qualitative variables are sometimes referred to as categorical variables. 
Quantitative variables are those variables that are measured in terms of numbers. 
Some examples of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent 
variable was type of supplement: none, strawberry, blueberry, and spinach. The 
variable “type of supplement” is a qualitative variable; there is nothing quantitative 
about it. In contrast, the dependent variable “memory test” is a quantitative 
variable since memory performance was measured on a quantitative scale (number 
correct).

Discrete and Continuous Variables
Variables such as number of children in a household are called discrete variables 
since the possible scores are discrete points on the scale. For example, a household 
could have three children or six children, but not 4.53 children. Other variables 
such as “time to respond to a question” are continuous variables since the scale is 
continuous and not made up of discrete steps. The response time could be 1.64 
seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of 
measurement preclude most measured variables from being truly continuous.
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Percentiles
by David Lane

Prerequisites
•none

Learning Objectives
1. Define percentiles
2. Use three formulas for computing percentiles
A test score in and of itself is usually difficult to interpret. For example, if you 
learned that your score on a measure of shyness was 35 out of a possible 50, you 
would have little idea how shy you are compared to other people. More relevant is 
the percentage of people with lower shyness scores than yours. This percentage is 
called a percentile. If 65% of the scores were below yours, then your score would 
be the 65th percentile.

Two Simple Definitions of Percentile
There is no universally accepted definition of a percentile. Using the 65th 
percentile as an example, the 65th percentile can be defined as the lowest score that 
is greater than 65% of the scores. This is the way we defined it above and we will 
call this “Definition 1.” The 65th percentile can also be defined as the smallest 
score that is greater than or equal to 65% of the scores. This we will call 
“Definition 2.” Unfortunately, these two definitions can lead to dramatically 
different results, especially when there is relatively little data. Moreover, neither of 
these definitions is explicit about how to handle rounding. For instance, what rank 
is required to be higher than 65% of the scores when the total number of scores is 
50? This is tricky because 65% of 50 is 32.5. How do we find the lowest number 
that is higher than 32.5% of the scores? A third way to compute percentiles 
(presented below) is a weighted average of the percentiles computed according to 
the first two definitions. This third definition handles rounding more gracefully 
than the other two and has the advantage that it allows the median to be defined 
conveniently as the 50th percentile.
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A Third Definition
Unless otherwise specified, when we refer to “percentile,” we will be referring to 
this third definition of percentiles. Let's begin with an example. Consider the 25th 
percentile for the 8 numbers in Table 1. Notice the numbers are given ranks 
ranging from 1 for the lowest number to 8 for the highest number.

Table 1. Test Scores.

Number Rank

3
5
7
8
9

11
13
15

1
2
3
4
5
6
7
8

The first step is to compute the rank (R) of the 25th percentile. This is done using 
the following formula:

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

where P is the desired percentile (25 in this case) and N is the number of numbers 
(8 in this case). Therefore,

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

If R is an integer, the Pth percentile is be the number with rank R. When R is not 
an integer, we compute the Pth percentile by interpolation as follows:
1. Define IR as the integer portion of R (the number to the left of the decimal 

point). For this example, IR = 2. 
2. Define FR as the fractional portion of R. For this example, FR = 0.25.
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3. Find the scores with Rank IR and with Rank IR + 1. For this example, this means 
the score with Rank 2 and the score with Rank 3. The scores are 5 and 7. 

4. Interpolate by multiplying the difference between the scores by FR and add the 
result to the lower score. For these data, this is (0.25)(7 - 5) + 5 = 5.5.

Therefore, the 25th percentile is 5.5. If we had used the first definition (the smallest 
score greater than 25% of the scores), the 25th percentile would have been 7. If we 
had used the second definition (the smallest score greater than or equal to 25% of 
the scores), the 25th percentile would have been 5.

For a second example, consider the 20 quiz scores shown in Table 2.

Table 2. 20 Quiz Scores.

Score Rank

4
4
5
5
5
5
6
6
6
7
7
7
8
8
9
9
9

10
10
10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

We will compute the 25th and the 85th percentiles. For the 25th,

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 
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IR = 5 and FR = 0.25.

Since the score with a rank of IR (which is 5) and the score with a rank of IR + 1 
(which is 6) are both equal to 5, the 25th percentile is 5. In terms of the formula:

25th percentile = (.25) x (5 - 5) + 5 = 5.

For the 85th percentile,

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

IR = 17 and FR = 0.85

Caution: FR does not generally equal the percentile to be 
computed as it does here.

The score with a rank of 17 is 9 and the score with a rank of 18 is 10. Therefore, 
the 85th percentile is:

(0.85)(10 - 9) + 9 = 9.85

Consider the 50th percentile of the numbers 2, 3, 5, 9.

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

IR = 2 and FR = 0.5.

The score with a rank of IR is 3 and the score with a rank of IR + 1 is 5. Therefore, 
the 50th percentile is:

(0.5)(5 - 3) + 3 = 4.

Finally, consider the 50th percentile of the numbers 2, 3, 5, 9, 11.

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

IR = 3 and FR = 0.

32



Whenever FR = 0, you simply find the number with rank IR. In this case, the third 
number is equal to 5, so the 50th percentile is 5. You will also get the right answer 
if you apply the general formula:

50th percentile = (0.00) (9 - 5) + 5 = 5.
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Levels of  Measurement
by Dan Osherson and David M. Lane

Prerequisites
•Chapter 1: Variables

Learning Objectives
1. Define and distinguish among nominal, ordinal, interval, and ratio scales
2. Identify a scale type
3. Discuss the type of scale used in psychological measurement
4. Give examples of errors that can be made by failing to understand the proper 

use of measurement scales

Types of Scales
Before we can conduct a statistical analysis, we need to measure our dependent 
variable. Exactly how the measurement is carried out depends on the type of 
variable involved in the analysis. Different types are measured differently. To 
measure the time taken to respond to a stimulus, you might use a stop watch. Stop 
watches are of no use, of course, when it comes to measuring someone's attitude 
towards a political candidate. A rating scale is more appropriate in this case (with 
labels like “very favorable,” “somewhat favorable,” etc.). For a dependent variable 
such as “favorite color,” you can simply note the color-word (like “red”) that the 
subject offers.

Although procedures for measurement differ in many ways, they can be 
classified using a few fundamental categories. In a given category, all of the 
procedures share some properties that are important for you to know about. The 
categories are called “scale types,” or just “scales,” and are described in this 
section.

Nominal scales
When measuring using a nominal scale, one simply names or categorizes 
responses. Gender, handedness, favorite color, and religion are examples of 
variables measured on a nominal scale. The essential point about nominal scales is 
that they do not imply any ordering among the responses. For example, when 
classifying people according to their favorite color, there is no sense in which 

34



green is placed “ahead of” blue. Responses are merely categorized. Nominal scales 
embody the lowest level of measurement.

Ordinal scales
A researcher wishing to measure consumers' satisfaction with their microwave 
ovens might ask them to specify their feelings as either “very dissatisfied,” 
“somewhat dissatisfied,” “somewhat satisfied,” or “very satisfied.” The items in 
this scale are ordered, ranging from least to most satisfied. This is what 
distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales 
allow comparisons of the degree to which two subjects possess the dependent 
variable. For example, our satisfaction ordering makes it meaningful to assert that 
one person is more satisfied than another with their microwave ovens. Such an 
assertion reflects the first person's use of a verbal label that comes later in the list 
than the label chosen by the second person.

On the other hand, ordinal scales fail to capture important information that 
will be present in the other scales we examine. In particular, the difference between 
two levels of an ordinal scale cannot be assumed to be the same as the difference 
between two other levels. In our satisfaction scale, for example, the difference 
between the responses “very dissatisfied” and “somewhat dissatisfied” is probably 
not equivalent to the difference between “somewhat dissatisfied” and “somewhat 
satisfied.” Nothing in our measurement procedure allows us to determine whether 
the two differences reflect the same difference in psychological satisfaction. 
Statisticians express this point by saying that the differences between adjacent 
scale values do not necessarily represent equal intervals on the underlying scale 
giving rise to the measurements. (In our case, the underlying scale is the true 
feeling of satisfaction, which we are trying to measure.)

What if the researcher had measured satisfaction by asking consumers to 
indicate their level of satisfaction by choosing a number from one to four? Would 
the difference between the responses of one and two necessarily reflect the same 
difference in satisfaction as the difference between the responses two and three? 
The answer is No. Changing the response format to numbers does not change the 
meaning of the scale. We still are in no position to assert that the mental step from 
1 to 2 (for example) is the same as the mental step from 3 to 4.
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Interval scales
Interval scales are numerical scales in which intervals have the same interpretation 
throughout. As an example, consider the Fahrenheit scale of temperature. The 
difference between 30 degrees and 40 degrees represents the same temperature 
difference as the difference between 80 degrees and 90 degrees. This is because 
each 10-degree interval has the same physical meaning (in terms of the kinetic 
energy of molecules).

Interval scales are not perfect, however. In particular, they do not have a true 
zero point even if one of the scaled values happens to carry the name “zero.” The 
Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent 
the complete absence of temperature (the absence of any molecular kinetic energy). 
In reality, the label “zero” is applied to its temperature for quite accidental reasons 
connected to the history of temperature measurement. Since an interval scale has 
no true zero point, it does not make sense to compute ratios of temperatures. For 
example, there is no sense in which the ratio of 40 to 20 degrees Fahrenheit is the 
same as the ratio of 100 to 50 degrees; no interesting physical property is preserved 
across the two ratios. After all, if the “zero” label were applied at the temperature 
that Fahrenheit happens to label as 10 degrees, the two ratios would instead be 30 
to 10 and 90 to 40, no longer the same! For this reason, it does not make sense to 
say that 80 degrees is “twice as hot” as 40 degrees. Such a claim would depend on 
an arbitrary decision about where to “start” the temperature scale, namely, what 
temperature to call zero (whereas the claim is intended to make a more 
fundamental assertion about the underlying physical reality).

Ratio scales
The ratio scale of measurement is the most informative scale. It is an interval scale 
with the additional property that its zero position indicates the absence of the 
quantity being measured. You can think of a ratio scale as the three earlier scales 
rolled up in one. Like a nominal scale, it provides a name or category for each 
object (the numbers serve as labels). Like an ordinal scale, the objects are ordered 
(in terms of the ordering of the numbers). Like an interval scale, the same 
difference at two places on the scale has the same meaning. And in addition, the 
same ratio at two places on the scale also carries the same meaning.

The Fahrenheit scale for temperature has an arbitrary zero point and is 
therefore not a ratio scale. However, zero on the Kelvin scale is absolute zero. This 
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makes the Kelvin scale a ratio scale. For example, if one temperature is twice as 
high as another as measured on the Kelvin scale, then it has twice the kinetic 
energy of the other temperature.

Another example of a ratio scale is the amount of money you have in your 
pocket right now (25 cents, 55 cents, etc.). Money is measured on a ratio scale 
because, in addition to having the properties of an interval scale, it has a true zero 
point: if you have zero money, this implies the absence of money. Since money has 
a true zero point, it makes sense to say that someone with 50 cents has twice as 
much money as someone with 25 cents (or that Bill Gates has a million times more 
money than you do).

What level of measurement is used for psychological variables?
Rating scales are used frequently in psychological research. For example, 
experimental subjects may be asked to rate their level of pain, how much they like 
a consumer product, their attitudes about capital punishment, their confidence in an 
answer to a test question. Typically these ratings are made on a 5-point or a 7-point 
scale. These scales are ordinal scales since there is no assurance that a given 
difference represents the same thing across the range of the scale. For example, 
there is no way to be sure that a treatment that reduces pain from a rated pain level 
of 3 to a rated pain level of 2 represents the same level of relief as a treatment that 
reduces pain from a rated pain level of 7 to a rated pain level of 6.

In memory experiments, the dependent variable is often the number of items 
correctly recalled. What scale of measurement is this? You could reasonably argue 
that it is a ratio scale. First, there is a true zero point; some subjects may get no 
items correct at all. Moreover, a difference of one represents a difference of one 
item recalled across the entire scale. It is certainly valid to say that someone who 
recalled 12 items recalled twice as many items as someone who recalled only 6 
items.

But number-of-items recalled is a more complicated case than it appears at 
first. Consider the following example in which subjects are asked to remember as 
many items as possible from a list of 10. Assume that (a) there are 5 easy items and 
5 difficult items, (b) half of the subjects are able to recall all the easy items and 
different numbers of difficult items, while (c) the other half of the subjects are 
unable to recall any of the difficult items but they do remember different numbers 
of easy items. Some sample data are shown below.
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Subject Easy ItemsEasy ItemsEasy ItemsEasy ItemsEasy Items Difficult ItemsDifficult ItemsDifficult ItemsDifficult ItemsDifficult Items Score

A 0 0 1 1 0 0 0 0 0 0 2

B 1 0 1 1 0 0 0 0 0 0 3

C 1 1 1 1 1 1 1 0 0 0 7

D 1 1 1 1 1 0 1 1 0 1 8

Let's compare (i) the difference between Subject A's score of 2 and Subject B's 
score of 3 and (ii) the difference between Subject C's score of 7 and Subject D's 
score of 8. The former difference is a difference of one easy item; the latter 
difference is a difference of one difficult item. Do these two differences necessarily 
signify the same difference in memory? We are inclined to respond “No” to this 
question since only a little more memory may be needed to retain the additional 
easy item whereas a lot more memory may be needed to retain the additional hard 
item. The general point is that it is often inappropriate to consider psychological 
measurement scales as either interval or ratio.

Consequences of level of measurement
Why are we so interested in the type of scale that measures a dependent variable? 
The crux of the matter is the relationship between the variable's level of 
measurement and the statistics that can be meaningfully computed with that 
variable. For example, consider a hypothetical study in which 5 children are asked 
to choose their favorite color from blue, red, yellow, green, and purple. The 
researcher codes the results as follows:

Color Code

Blue
Red

Yellow
Green
Purple

1
2
3
4
5

This means that if a child said her favorite color was “Red,” then the choice was 
coded as “2,” if the child said her favorite color was “Purple,” then the response 
was coded as 5, and so forth. Consider the following hypothetical data:
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Subject Color Code

1
2
3
4
5

Blue
Blue

Green
Green
Purple

1
1
4
4
5

Each code is a number, so nothing prevents us from computing the average code 
assigned to the children. The average happens to be 3, but you can see that it would 
be senseless to conclude that the average favorite color is yellow (the color with a 
code of 3). Such nonsense arises because favorite color is a nominal scale, and 
taking the average of its numerical labels is like counting the number of letters in 
the name of a snake to see how long the beast is.

Does it make sense to compute the mean of numbers measured on an ordinal 
scale? This is a difficult question, one that statisticians have debated for decades. 
The prevailing (but by no means unanimous) opinion of statisticians is that for 
almost all practical situations, the mean of an ordinally-measured variable is a 
meaningful statistic. However, there are extreme situations in which computing the 
mean of an ordinally-measured variable can be very misleading.
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Distributions
by David M. Lane and Heidi Ziemer

Prerequisites
•Chapter 1: Variables

Learning Objectives
1. Define “distribution”
2. Interpret a frequency distribution
3. Distinguish between a frequency distribution and a probability distribution
4. Construct a grouped frequency distribution for a continuous variable
5. Identify the skew of a distribution
6. Identify bimodal, leptokurtic, and platykurtic distributions

Distributions of Discrete Variables
I recently purchased a bag of Plain M&M's. The M&M's were in six different 
colors. A quick count showed that there were 55 M&M's: 17 brown, 18 red, 7 
yellow, 7 green, 2 blue, and 4 orange. These counts are shown below in Table 1.

Table 1. Frequencies in the Bag of M&M's

Color Frequency

Brown
Red

Yellow
Green
Blue

Orange

17
18
7
7
2
4

This table is called a frequency table and it describes the distribution of M&M 
color frequencies. Not surprisingly, this kind of distribution is called a frequency 
distribution. Often a frequency distribution is shown graphically as in Figure 1.

40



0

5

10

15

20

Brown Red Yellow Green Blue Orange

Fr
eq

ue
nc

y

Figure 1. Distribution of 55 M&M's.

The distribution shown in Figure 1 concerns just my one bag of M&M's. You 
might be wondering about the distribution of colors for all M&M's. The 
manufacturer of M&M's provides some information about this matter, but they do 
not tell us exactly how many M&M's of each color they have ever produced. 
Instead, they report proportions rather than frequencies. Figure 2 shows these 
proportions. Since every M&M is one of the six familiar colors, the six proportions 
shown in the figure add to one. We call Figure 2 a probability distribution because 
if you choose an M&M at random, the probability of getting, say, a brown M&M is 
equal to the proportion of M&M's that are brown (0.30).
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Color Frequency
Brown 17
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Blue 2
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Figure 2. Distribution of all M&M's.

Notice that the distributions in Figures 1 and 2 are not identical. Figure 1 portrays 
the distribution in a sample of 55 M&M's. Figure 2 shows the proportions for all 
M&M's. Chance factors involving the machines used by the manufacturer 
introduce random variation into the different bags produced. Some bags will have a 
distribution of colors that is close to Figure 2; others will be further away.

Continuous Variables
The variable “color of M&M” used in this example is a discrete variable, and its 
distribution is also called discrete. Let us now extend the concept of a distribution 
to continuous variables.

The data shown in Table 2 are the times it took one of us (DL) to move the 
cursor over a small target in a series of 20 trials. The times are sorted from shortest 
to longest. The variable “time to respond” is a continuous variable. With time 
measured accurately (to many decimal places), no two response times would be 
expected to be the same. Measuring time in milliseconds (thousandths of a second) 
is often precise enough to approximate a continuous variable in psychology. As 
you can see in Table 2, measuring DL's responses this way produced times no two 
of which were the same. As a result, a frequency distribution would be 
uninformative: it would consist of the 20 times in the experiment, each with a 
frequency of 1.
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Table 2. Response Times

568
577
581
640
641
645
657
673
696
703

720
728
729
777
808
824
825
865
875

1007

The solution to this problem is to create a grouped frequency distribution. In a 
grouped frequency distribution, scores falling within various ranges are tabulated. 
Table 3 shows a grouped frequency distribution for these 20 times.

Table 3. Grouped frequency distribution

Range Frequency

500-600
600-700
700-800
800-900

900-1000
1000-1100

3
6
5
5
0
1

Grouped frequency distributions can be portrayed graphically. Figure 3 shows a 
graphical representation of the frequency distribution in Table 3. This kind of graph 
is called a histogram. Chapter 2 contains an entire section devoted to histograms.
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Figure 3. A histogram of the grouped frequency distribution shown in Table 
3. The labels on the X-axis are the middle values of the range they 
represent.

Probability Densities
The histogram in Figure 3 portrays just DL's 20 times in the one experiment he 
performed. To represent the probability associated with an arbitrary movement 
(which can take any positive amount of time), we must represent all these potential 
times at once. For this purpose, we plot the distribution for the continuous variable 
of time. Distributions for continuous variables are called continuous distributions. 
They also carry the fancier name probability density. Some probability densities 
have particular importance in statistics. A very important one is shaped like a bell, 
and called the normal distribution. Many naturally-occurring phenomena can be 
approximated surprisingly well by this distribution. It will serve to illustrate some 
features of all continuous distributions.

An example of a normal distribution is shown in Figure 4. Do you see the 
“bell”? The normal distribution doesn't represent a real bell, however, since the left 
and right tips extend indefinitely (we can't draw them any further so they look like 
they've stopped in our diagram). The Y-axis in the normal distribution represents 
the “density of probability.” Intuitively, it shows the chance of obtaining values 
near corresponding points on the X-axis. In Figure 4, for example, the probability 
of an observation with value near 40 is about half of the probability of an 
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observation with value near 50. (For more information, see Chapter 7.)

20 40 60 80

Figure 4. A normal distribution.

Although this text does not discuss the concept of probability density in detail, you 
should keep the following ideas in mind about the curve that describes a 
continuous distribution (like the normal distribution). First, the area under the 
curve equals 1. Second, the probability of any exact value of X is 0. Finally, the 
area under the curve and bounded between two given points on the X-axis is the 
probability that a number chosen at random will fall between the two points. Let us 
illustrate with DL's hand movements. First, the probability that his movement takes 
some amount of time is one! (We exclude the possibility of him never finishing his 
gesture.) Second, the probability that his movement takes exactly 
598.956432342346576 milliseconds is essentially zero. (We can make the 
probability as close as we like to zero by making the time measurement more and 
more precise.) Finally, suppose that the probability of DL's movement taking 
between 600 and 700 milliseconds is one tenth. Then the continuous distribution 
for DL's possible times would have a shape that places 10% of the area below the 
curve in the region bounded by 600 and 700 on the X-axis.

45



Shapes of Distributions
Distributions have different shapes; they don't all look like the normal distribution 
in Figure 4. For example, the normal probability density is higher in the middle 
compared to its two tails. Other distributions need not have this feature. There is 
even variation among the distributions that we call “normal.” For example, some 
normal distributions are more spread out than the one shown in Figure 4 (their tails 
begin to hit the X-axis further from the middle of the curve --for example, at 10 
and 90 if drawn in place of Figure 4). Others are less spread out (their tails might 
approach the X-axis at 30 and 70). More information on the normal distribution 
can be found in a later chapter completely devoted to them.

The distribution shown in Figure 4 is symmetric; if you folded it in the 
middle, the two sides would match perfectly. Figure 5 shows the discrete 
distribution of scores on a psychology test. This distribution is not symmetric: the 
tail in the positive direction extends further than the tail in the negative direction. 
A distribution with the longer tail extending in the positive direction is said to have 
a positive skew. It is also described as “skewed to the right.”
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Figure 5. A distribution with a positive skew. 

Figure 6 shows the salaries of major league baseball players in 1974 (in thousands 
of dollars). This distribution has an extreme positive skew.
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Figure 6. A distribution with a very large positive skew.

A continuous distribution with a positive skew is shown in Figure 7.

Figure 7. A continuous distribution with a positive skew.
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Although less common, some distributions have a negative skew. Figure 8 shows 
the scores on a 20-point problem on a statistics exam. Since the tail of the 
distribution extends to the left, this distribution is skewed to the left.
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Figure 8. A distribution with negative skew. This histogram shows the 
frequencies of various scores on a 20-point question on a statistics 
test.
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A continuous distribution with a negative skew is shown in Figure 9.

Figure 9. A continuous distribution with a negative skew.

The distributions shown so far all have one distinct high point or peak. The 
distribution in Figure 10 has two distinct peaks. A distribution with two peaks is 
called a bimodal distribution.
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Figure 10. Frequencies of times between eruptions of the Old Faithful 
geyser. Notice the two distinct peaks: one at 1.75 and the other at 
4.25.

Distributions also differ from each other in terms of how large or “fat” their tails 
are. Figure 11 shows two distributions that differ in this respect. The upper 
distribution has relatively more scores in its tails; its shape is called leptokurtic. 
The lower distribution has relatively fewer scores in its tails; its shape is called 
platykurtic.
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Figure 11. Distributions differing in kurtosis. The top distribution has long 
tails. It is called “leptokurtic.” The bottom distribution has short tails. 
It is called “platykurtic.”
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Summation Notation
by David M. Lane

Prerequisites
• None

Learning Objectives
1. Use summation notation to express the sum of all numbers
2. Use summation notation to express the sum of a subset of numbers
3. Use summation notation to express the sum of squares
Many statistical formulas involve summing numbers. Fortunately there is a 
convenient notation for expressing summation. This section covers the basics of 
this summation notation.

Let's say we have a variable X that represents the weights (in grams) of 4 
grapes. The data are shown in Table 1.

Table 1. Weights of 4 grapes.

Grape X

1
2
3
4

4.6
5.1
4.9
4.4

We label Grape 1's weight X1, Grape 2's weight X2, etc. The following formula 
means to sum up the weights of the four grapes:
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�� = 4.6� + 5.1� + 4.9� + 4.4� = 21.16 + 26.01 + 24.01 + 19.36 = 90.54 
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The Greek letter Σ indicates summation. The “i = 1” at the bottom indicates that 
the summation is to start with X1 and the 4 at the top indicates that the summation 
will end with X4. The “Xi” indicates that X is the variable to be summed as i goes 
from 1 to 4. Therefore,
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indicates that only the first 3 scores are to be summed. The index variable i goes 
from 1 to 3.

When all the scores of a variable (such as X) are to be summed, it is often 
convenient to use the following abbreviated notation:
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Thus, when no values of i are shown, it means to sum all the values of X.
Many formulas involve squaring numbers before they are summed. This is 

indicated as

= 21.16 + 26.01 + 24.01 + 19.36 = 90.54.

Notice that:


��
�

���

 

 


�� = �� + �� + �� + �� = 4.6 + 5.1 + 4.9 + 4.4 = 19
�

���

 

 


��
�

���

 

 


� 

 


�� = 4.6� + 5.1� + 4.9� + 4.4� = 21.16 + 26.01 + 24.01 + 19.36 = 90.54 

 

�
��
�
	
�� 

 


�� = 28 

 

 

 

because the expression on the left means to sum up all the values of X and then 
square the sum (19² = 361), whereas the expression on the right means to square 
the numbers and then sum the squares (90.54, as shown).

Some formulas involve the sum of cross products. Table 2 shows the data for 
variables X and Y. The cross products (XY) are shown in the third column. The 
sum of the cross products is 3 + 4 + 21 = 28.
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Table 2. Cross Products.

X Y XY

1
2
3

3
2
7

3
4

21

In summation notation, this is written as:
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Linear Transformations
by David M. Lane

Prerequisites
• None

Learning Objectives
1. Give the formula for a linear transformation
2. Determine whether a transformation is linear
3. Describe what is linear about a linear transformation
Often it is necessary to transform data from one measurement scale to another. For 
example, you might want to convert height measured in feet to height measured in 
inches. Table 1 shows the heights of four people measured in both feet and inches. 
To transform feet to inches, you simply multiply by 12. Similarly, to transform 
inches to feet, you divide by 12.
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Table 1. Converting between feet and inches.

Feet Inches

5.00
6.25
5.50
5.75

60
75
66
69

Some conversions require that you multiply by a number and then add a second 
number. A good example of this is the transformation between degrees Centigrade 
and degrees Fahrenheit. Table 2 shows the temperatures of 5 US cities in the early 
afternoon of November 16, 2002.

Table 2. Temperatures in 5 cities on 11/16/2002.

City Degrees Fahrenheit Degrees Centigrade

Houston
Chicago

Minneapolis
Miami

Phoenix

54
37
31
78
70

12.22
2.78
-0.56
25.56
21.11

The formula to transform Centigrade to Fahrenheit is:

F = 1.8C + 32

The formula for converting from Fahrenheit to Centigrade is

C = 0.5556F - 17.778

The transformation consists of multiplying by a constant and then adding a second 
constant. For the conversion from Centigrade to Fahrenheit, the first constant is 1.8 
and the second is 32.

Figure 1 shows a plot of degrees Centigrade as a function of degrees 
Fahrenheit. Notice that the points form a straight line. This will always be the case 
if the transformation from one scale to another consists of multiplying by one 
constant and then adding a second constant. Such transformations are therefore 
called linear transformations.
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Figure 1. Degrees Centigrade as a function of degrees Fahrenheit
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Logarithms
by David M. Lane

Prerequisites
• Chapter 1: Distributions

Learning Objectives
1. Compute logs using different bases
2. Convert between bases
3. State the relationship between logs and proportional change

The log transformation reduces positive skew. This can be valuable both for 
making the data more interpretable and for helping to meet the assumptions of 
inferential statistics.

Basics of Logarithms (Logs)
Logs are, in a sense, the opposite of exponents. Consider the following simple 
expression:
102 = 100
Here we can say the base of 10 is raised to the second power. Here is an example 
of a log:
Log10(100) = 2
This can be read as: The log base ten of 100 equals 2. The result is the power that 
the base of 10 has to be raised to in order to equal the value (100). Similarly,
Log10(1000) = 3
since 10 has to be raised to the third power in order to equal 1,000.

These examples all used base 10, but any base could have been used. There 
is a base which results in “natural logarithms” and that is called e and equals 
approximately 2.718. It is beyond the scope of this book to explain what is 
“natural” about it. Natural logarithms can be indicated either as: Ln(x) or loge(x)

Changing the base of the log changes the result by a multiplicative constant. 
To convert from Log10 to natural logs, you multiply by 2.303. Analogously, to 
convert in the other direction, you divide by 2.303.
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Taking the antilog of a number undoes the operation of taking the log. 
Therefore, since Log10(1000) = 3, the antilog10 of 3 is 1,000. Taking the antilog of 
a number simply raises the base of the logarithm in question to that number.

Logs and Proportional Change
A series of numbers that increases proportionally will increase in equal amounts 
when converted to logs. For example, the numbers in the first column of Table 1 
increase by a factor of 1.5 so that each row is 1.5 times as high as the preceding 
row. The Log10 transformed numbers increase in equal steps of 0.176.

Table 1. Proportional raw changes are equal in log units.

Raw Log

4.0
6.0
9.0

13.5

0.602
0.778
0.954
1.130

As another example, if one student increased their score from 100 to 200 while a 
second student increased their's from 150 to 300, the percentage change (100%) is 
the same for both students. The log difference is also the same, as shown below.

Log10(100) = 2.000
Log10(200) = 2.301
Difference: 0.301

Log10(150) = 2.176
Log10(300) = 2.477
Difference: 0.301

Arithmetic Operations
Rules for logs of products and quotients are shown below.

Log(AB) = Log(A) + Log(B)

Log(A/B) = Log(A) - Log(B)

For example,
Log10(10 x 100) = Log10(10) + Log10(100) = 1 + 2 = 3.
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Similarly,
Log10(100/10) = Log10(100) - Log10(10) = 2 - 1 = 1.
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Statistical Literacy
by Denise Harvey and David M. Lane

Prerequisites
• Chapter 1: Levels of Measurement

The Board of Trustees at a university commissioned a top management-consulting 
firm to address the admission processes for academic and athletic programs. The 
consulting firm wrote a report discussing the trade-off between maintaining 
academic and athletic excellence. One of their key findings was:

The standard for an athlete’s admission, as reflected in SAT 
scores alone, is lower than the standard for non-athletes by as 
much as 20 percent, with the weight of  this difference being 
carried by the so-called “revenue sports” of  football and 
basketball. Athletes are also admitted through a different 
process than the one used to admit non-athlete students.

What do you think?
Based on what you have learned in this chapter about measurement scales, does it 
make sense to compare SAT scores using percentages? Why or why not?

Think about this before continuing:

As you may know, the SAT has an arbitrarily-determined lower 
limit on test scores of  200. Therefore, SAT is measured on 
either an ordinal scale or, at most, an interval scale. However, it 
is clearly not measured on a ratio scale. Therefore, it is not 
meaningful to report SAT score differences in terms of  
percentages. For example, consider the effect of  subtracting 200 
from every student's score so that the lowest possible score is 0. 
How would that affect the difference as expressed in 
percentages?
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Exercises

Prerequisites
• All material presented in Chapter: “Introduction”

1. A teacher wishes to know whether the males in his/her class have more 
conservative attitudes than the females. A questionnaire is distributed assessing 
attitudes and the males and the females are compared. Is this an example of 
descriptive or inferential statistics?

2. A cognitive psychologist is interested in comparing two ways of presenting 
stimuli on sub- sequent memory. Twelve subjects are presented with each method 
and a memory test is given. What would be the roles of descriptive and 
inferential statistics in the analysis of these data?

3. If you are told only that you scored in the 80th percentile, do you know from 
that description exactly how it was calculated? Explain.

4. A study is conducted to determine whether people learn better with spaced or 
massed practice. Subjects volunteer from an introductory psychology class. At 
the beginning of the semester 12 subjects volunteer and are assigned to the 
massed-practice condition. At the end of the semester 12 subjects volunteer and 
are assigned to the spaced-practice condition. This experiment involves two 
kinds of non-random sampling: (1) Subjects are not randomly sampled from 
some specified population and (2) subjects are not randomly assigned to 
conditions. Which of the problems relates to the generality of the results? Which 
of the problems relates to the validity of the results? Which problem is more 
serious?

5. Give an example of an independent and a dependent variable.

6. Categorize the following variables as being qualitative or quantitative:

7. Specify the level of measurement used for the items in Question 6.

8. Which of the following are linear transformations?
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9. The formula for finding each student’s test grade (g) from his or her raw score 
(s) on a test is as follows: g = 16 + 3s

Is this a linear transformation?

If a student got a raw score of 20, what is his test grade?

10. For the numbers 1, 2, 4, 16, compute the following:

11. Which of the frequency polygons has a large positive skew? Which has a large 
negative skew?
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12. What is more likely to have a skewed distribution: time to solve an anagram 
problem (where the letters of a word or phrase are rearranged into another 
word or phrase like “dear” and “read” or “funeral” and “real fun”) or scores on 
a vocabulary test?

Questions from Case Studies

Angry Moods (AM) case study

13. (AM) Which variables are the participant variables? (They act as independent 
variables in this study.)

14. (AM) What are the dependent variables?

15. (AM) Is Anger-Out a quantitative or qualitative variable?

Teacher Ratings (TR) case study
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16. (TR) What is the independent variable in this study?

ADHD Treatment (AT) case study

17. (AT) What is the independent variable of this experiment? How many levels 
does it have?

18. (AT) What is the dependent variable? On what scale (nominal, ordinal, interval, 
ratio) was it measured?
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