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Scientific Method
by David M. Lane

Prerequisites
• none 
This section contains a brief discussion of the most important principles of the 
scientific method. A thorough treatment of the philosophy of science is beyond the 
scope of this work.

One of the hallmarks of the scientific method is that it depends on empirical 
data. To be a proper scientific investigation, the data must be collected 
systematically. However, scientific investigation does not necessarily require 
experimentation in the sense of manipulating variables and observing the results. 
Observational studies in the fields of astronomy, developmental psychology, and 
ethology are common and provide valuable scientific information.

Theories and explanations are very important in science. Theories in science 
can never be proved since one can never be 100% certain that a new empirical 
finding inconsistent with the theory will never be found.

Scientific theories must be potentially disconfirmable. If a theory can 
accommodate all possible results then it is not a scientific theory. Therefore, a 
scientific theory should lead to testable hypotheses. If a hypothesis is disconfirmed, 
then the theory from which the hypothesis was deduced is incorrect. For example, 
the secondary reinforcement theory of attachment states that an infant becomes 
attached to its parent by means of a pairing of the parent with a primary reinforcer 
(food). It is through this “secondary reinforcement” that the child-parent bond 
forms. The secondary reinforcement theory has been disconfirmed by numerous 
experiments. Perhaps the most notable is one in which infant monkeys were fed by 
a surrogate wire mother while a surrogate cloth mother was available. The infant 
monkeys formed no attachment to the wire monkeys and frequently clung to the 
cloth surrogate mothers (Harlow, 1958).

If a hypothesis derived from a theory is confirmed, then the theory has 
survived a test and it becomes more useful and better thought of by the researchers 
in the field. A theory is not confirmed when correct hypotheses are derived from it.

A key difference between scientific explanations and faith-based 
explanations is simply that faith-based explanations are based on faith and do not 
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need to be testable. This does not mean that an explanation that cannot be tested is 
incorrect in some cosmic sense. It just means that it is not a scientific explanation.

The method of investigation in which a hypothesis is developed from a 
theory and then confirmed or disconfirmed involves deductive reasoning. However, 
deductive reasoning does not explain where the theory came from in the first place. 
In general, a theory is developed by a scientist who is aware of many empirical 
findings on a topic of interest. Then, through a generally poorly understood process 
called “induction,” the scientist develops a way to explain all or most of the 
findings within a relatively simple framework or theory.

An important attribute of a good scientific theory is that it is parsimonious. 
That is, that it is simple in the sense that it uses relatively few constructs to explain 
many empirical findings. A theory that is so complex that it has as many 
assumptions as it has predictions is not very valuable.

Although strictly speaking, disconfirming an hypothesis deduced from a 
theory disconfirms the theory, it rarely leads to the abandonment of the theory. 
Instead, the theory will probably be modified to accommodate the inconsistent 
finding. If the theory has to be modified over and over to accommodate new 
findings, the theory generally becomes less and less parsimonious. This can lead to 
discontent with the theory and the search for a new theory. If a new theory is 
developed that can explain the same facts in a more parsimonious way, then the 
new theory will eventually supersede the old theory.
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Measurement
by David M. Lane

Prerequisites
• Values of Pearson's Correlation
• Variance Sum Law
• Chapter 3: Measures of Variability

Learning Objectives
1. Define reliability
2. Describe reliability in terms of true scores and error
3. Compute reliability from the true score and error variance
4. Define the standard error of measurement and state why it is valuable
5. State the effect of test length on reliability
6. Distinguish between reliability and validity
7. Define three types of validity
8. State the how reliability determines the upper limit to validity

The measurement of psychological attributes such as self-esteem can be complex. 
A good measurement scale should be both reliable and valid. These concepts will 
be discussed in turn.

Reliability
The notion of reliability revolves around whether you would get at least 
approximately the same result if you measure something twice with the same 
measurement instrument. A common way to define reliability is the correlation 
between parallel forms of a test. Letting “test” represent a parallel form of the test, 
the symbol rtest,test is used to denote the reliability of the test.

True Scores and Error
Assume you wish to measure a person's mean response time to the onset of a 
stimulus. For simplicity, assume that there is no learning over tests which, of 
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course, is not really true. The person is given 1,000 trials on the task and you 
obtain the response time on each trial.

The mean response time over the 1,000 trials can be thought of as the 
person's “true” score, or at least a very good approximation of it. Theoretically, the 
true score is the mean that would be approached as the number of trials increases 
indefinitely.

An individual response time can be thought of as being composed of two 
parts: the true score and the error of measurement. Thus if the person's true score 
were 345 and their response on one of the trials were 358, then the error of 
measurement would be 13. Similarly, if the response time were 340, the error of 
measurement would be -5.

Now consider the more realistic example of a class of students taking a 100-
point true/false exam. Let's assume that each student knows the answer to some of 
the questions and has no idea about the other questions. For the sake of simplicity, 
we are assuming there is no partial knowledge of any of the answers and for a 
given question a student either knows the answer or guesses. Finally, assume the 
test is scored such that a student receives one point for a correct answer and loses a 
point for an incorrect answer. In this example, a student's true score is the number 
of questions they know the answer to and their error score is their score on the 
questions they guessed on. For example, assume a student knew 90 of the answers 
and guessed correctly on 7 of the remaining 10 (and therefore incorrectly on 3). 
Their true score would be 90 since that is the number of answers they knew. Their 
error score would be 7 - 3 = 4 and therefore their actual test score would be 90 + 4.

Every test score can be thought of as the sum of two independent 
components, the true score and the error score. This can be written as:
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The following expression follows directly from the Variance Sum Law:
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Reliability in Terms of True Scores and Error

It can be shown that the reliability of a test, rtest,test, is the ratio of true-score 
variance to test-score variance. This can be written as:
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It is important to understand the implications of the role the variance of true scores 
plays in the definition of reliability: If a test were given in two populations for 
which the variance of the true scores differed, the reliability of the test would be 
higher in the population with the higher true-score variance. Therefore, reliability 
is not a property of a test per se but the reliability of a test in a given population.

Assessing Error of Measurement
The reliability of a test does not show directly how close the test scores are to the 
true scores. That is, it does not reveal how much a person's test score would vary 
across parallel forms of the test. By definition, the mean over a large number of 
parallel tests would be the true score. The standard deviation of a person's test 
scores would indicate how much the test scores vary from the true score. This 
standard deviation is called the standard error of measurement. In practice, it is not 
practical to give a test over and over to the same person and/or assume that there 
are no practice effects. Instead, the following formula is used to estimate the 
standard error of measurement.
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where smeasurement is the standard error of measurement, stest is the standard deviation 
of the test scores, and rtest,test is the reliability of the test. Taking the extremes, if the 
reliability is 0, then the standard error of measurement is equal to the standard 
deviation of the test; if the reliability is perfect (1.0) then the standard error of 
measurement is 0.

Increasing Reliability
It is important to make measures as reliable as is practically possible. Suppose an 
investigator is studying the relationship between spatial ability and a set of other 
variables. The higher the reliability of the test of spatial ability, the higher the 
correlations will be. Similarly, if an experimenter seeks to determine whether a 
particular exercise regiment decreases blood pressure, the higher the reliability of 
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the measure of blood pressure, the more sensitive the experiment. More precisely, 
the higher the reliability the higher the power of the experiment. Power is covered 
in detail in Chapter 13. Finally, if a test is being used to select students for college 
admission or employees for jobs, the higher the reliability of the test the stronger 
will be the relationship to the criterion.

Two basic ways of increasing reliability are (1) to improve the quality of the 
items and (2) to increase the number of items. Items that are either too easy so that 
almost everyone gets them correct or too difficult so that almost no one gets them 
correct are not good items: they provide very little information. In most contexts, 
items which about half the people get correct are the best (other things being 
equal).

Items that do not correlate with other items can usually be improved. 
Sometimes the item is confusing or ambiguous.

Increasing the number of items increases reliability in the manner shown by 
the following formula:
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where k is the factor by which the test length is increased, rnew,new is the reliability 
of the new longer test, and rtest,test is the current reliability. For example, if a test 
with 50 items has a reliability of .70 then the reliability of a test that is 1.5 times 
longer (75 items) would be calculated as follows
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which equals 0.78. Thus increasing the number of items from 50 to 75 would 
increase the reliability from 0.70 to 0.78.

It is important to note that this formula assumes the new items have the same 
characteristics as the old items. Obviously adding poor items would not increase 
the reliability as expected and might even decrease the reliability.
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Validity
The validity of a test refers to whether the test measures what it is supposed to 
measure. The three most common types of validity are face validity, empirical 
validity, and construct validity. We consider these types of validity below.

Face Validity
A test's face validity refers to whether the test appears to measure what it is 
supposed to measure. That is, does the test “on its face” appear to measure what it 
is supposed to be measuring. An Asian history test consisting of a series of 
questions about Asian history would have high face validity. If the test included 
primarily questions about American history then it would have little or no face 
validity as a test of Asian history.

Predictive Validity
Predictive validity (sometimes called empirical validity) refers to a test's ability to 
predict a relevant behavior. For example, the main way in which SAT tests are 
validated is by their ability to predict college grades. Thus, to the extent these tests 
are successful at predicting college grades they are said to possess predictive 
validity.

Construct Validity
Construct validity is more difficult to define. In general, a test has construct 
validity if its pattern of correlations with other measures is in line with the 
construct it is purporting to measure. Construct validity can be established by 
showing a test has both convergent and divergent validity. A test has convergent 
validity if it correlates with other tests that are also measures of the construct in 
question. Divergent validity is established by showing the test does not correlate 
highly with tests of other constructs. Of course, some constructs may overlap so 
the establishment of convergent and divergent validity can be complex.

To take an example, suppose one wished to establish the construct validity of 
a new test of spatial ability. Convergent and divergent validity could be established 
by showing the test correlates relatively highly with other measures of spatial 
ability but less highly with tests of verbal ability or social intelligence.
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Reliability and Predictive Validity
The reliability of a test limits the size of the correlation between the test and other 
measures. In general, the correlation of a test with another measure will be lower 
than the test's reliability. After all, how could a test correlate with something else as 
high as it correlates with a parallel form of itself? Theoretically it is possible for a 
test to correlate as high as the square root of the reliability with another measure. 
For example, if a test has a reliability of 0.81 then it could correlate as high as 0.90 
with another measure. This could happen if the other measure were a perfectly 
reliable test of the same construct as the test in question. In practice, this is very 
unlikely.

A correlation above the upper limit set by reliabilities can act as a red flag. 
For example, Vul, Harris, Winkielman, and Paschler (2009) found that in many 
studies the correlations between various fMRI activation patterns and personality 
measures were higher than their reliabilities would allow. A careful examination of 
these studies revealed serious flaws in the way the data were analyzed.
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Basics of  Data Collection
by Heidi Zeimer

Prerequisites
• None

Learning Objectives
1. Describe how a variable such as height should be recorded
2. Choose a good response scale for a questionnaire
Most statistical analyses require that your data be in numerical rather than verbal 
form (you can’t punch letters into your calculator). Therefore, data collected in 
verbal form must be coded so that it is represented by numbers. To illustrate, 
consider the data in Table 1.

Table 1. Example Data

Student 
Name

Hair 
Color

Gender Major Height Computer
Experience

Norma Brown Female Psychology 5’4” Lots

Amber Blonde Female Social Science 5’7” Very little

Paul Blonde Male History 6’1” Moderate

Christopher Black Male Biology 5’10” Lots

Sonya Brown Female Psychology 5’4” Little

Can you conduct statistical analyses on the above data or must you re-code it in 
some way? For example, how would you go about computing the average height of 
the 5 students. You cannot enter students’ heights in their current form into a 
statistical program -- the computer would probably give you an error message 
because it does not understand notation such as 5’4”. One solution is to change all 
the numbers to inches. So, 5’4” becomes (5 x 12 ) + 4 = 64, and 6’1” becomes (6 x 
12 ) + 1 = 73, and so forth. In this way, you are converting height in feet and inches 
to simply height in inches. From there, it is very easy to ask a statistical program to 
calculate the mean height in inches for the 5 students.
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You may ask, “Why not simply ask subjects to write their height in inches in 
the first place?” Well, the number one rule of data collection is to ask for 
information in such a way as it will be most accurately reported. Most people know 
their height in feet and inches and cannot quickly and accurately convert it into 
inches “on the fly.” So, in order to preserve data accuracy, it is best for researchers 
to make the necessary conversions.

Let’s take another example. Suppose you wanted to calculate the mean 
amount of computer experience for the five students shown in Table 1. One way 
would be to convert the verbal descriptions to numbers as shown in Table 2. Thus, 
“Very Little” would be converted to “1” and “Little” would be converted to “2.”

Table 2. Conversion of verbal descriptions to numbers

1 2 3 4 5
Very Little Little Moderate Lots Very Lots

Measurement Examples

Example #1: How much information should I record?
Say you are volunteering at a track meet at your college, and your job is to record 
each runner’s time as they pass the finish line for each race. Their times are shown 
in large red numbers on a digital clock with eight digits to the right of the decimal 
point, and you are told to record the entire number in your tablet. Thinking eight 
decimal places is a bit excessive, you only record runners’ times to one decimal 
place. The track meet begins, and runner number one finishes with a time of 
22.93219780 seconds. You dutifully record her time in your tablet, but only to one 
decimal place, that is 22.9. Race number two finishes and you record 32.7 for the 
winning runner. The fastest time in Race number three is 25.6. Race number four 
winning time is 22.9, Race number five is…. But wait! You suddenly realize your 
mistake; you now have a tie between runner one and runner four for the title of 
Fastest Overall Runner! You should have recorded more information from the 
digital clock -- that information is now lost, and you cannot go back in time and 
record running times to more decimal places.

The point is that you should think very carefully about the scales and 
specificity of information needed in your research before you begin collecting data. 
If you believe you might need additional information later but are not sure, 
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measure it; you can always decide to not use some of the data, or “collapse” your 
data down to lower scales if you wish, but you cannot expand your data set to 
include more information after the fact. In this example, you probably would not 
need to record eight digits to the right of the decimal point. But recording only one 
decimal digit is clearly too few.

Example #2
Pretend for a moment that you are teaching five children in middle school (yikes!), 
and you are trying to convince them that they must study more in order to earn 
better grades. To prove your point, you decide to collect actual data from their 
recent math exams, and, toward this end, you develop a questionnaire to measure 
their study time and subsequent grades. You might develop a questionnaire which 
looks like the following:

1. Please write your name: ____________________________

2. Please indicate how much you studied for this math exam: 
     a lot……………moderate……….…….little

3. Please circle the grade you received on the math exam: 
     A  B  C  D  F

Given the above questionnaire, your obtained data might look like the following:

Name Amount Studied Grade
John Little C

Sally Moderate B

Alexander Lots A

Linda Moderate A

Thomas Little B

Eyeballing the data, it seems as if the children who studied more received better 
grades, but it’s difficult to tell. “Little,” “lots,” and “B,” are imprecise, qualitative 
terms. You could get more precise information by asking specifically how many 
hours they studied and their exact score on the exam. The data then might look as 
follows:

Name Hours studied % Correct
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John 5 71

Sally 9 83

Alexander 13 97

Linda 12 91

Thomas 7 85

Of course, this assumes the students would know how many hours they studied. 
Rather than trust the students' memories, you might ask them to keep a log of their 
study time as they study.
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Sampling Bias
by David M. Lane

Prerequisites
• Inferential Statistics (including sampling)

Learning Objectives
1. Recognize sampling bias
2. Distinguish among self-selection bias, undercoverage bias, and survivorship 

bias

Descriptions of various types of sampling such as simple random sampling and 
stratified random sampling are covered in the inferential statistics section of 
Chapter 1. This section discusses various types of sampling biases including self-
selection bias and survivorship bias. Examples of other sampling biases that are not 
easily categorized will also be given.

It is important to keep in mind that sampling bias refers to the method of 
sampling, not the sample itself. There is no guarantee that random sampling will 
result in a sample representative of the population just as not every sample 
obtained using a biased sampling method will be greatly non-representative of the 
population.

Self-Selection Bias
Imagine that a university newspaper ran an ad asking for students to volunteer for a 
study in which intimate details of their sex lives would be discussed. Clearly the 
sample of students who would volunteer for such a study would not be 
representative of the students at the university. Similarly, an online survey about 
computer use is likely to attract people more interested in technology than is 
typical. In both of these examples, people who “self-select” themselves for the 
experiment are likely to differ in important ways from the population the 
experimenter wishes to draw conclusions about. Many of the admittedly “non-
scientific” polls taken on television or web sites suffer greatly from self-selection 
bias.
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A self-selection bias can result when the non-random component occurs 
after the potential subject has enlisted in the experiment. Considering again the 
hypothetical experiment in which subjects are to be asked intimate details of their 
sex lives, assume that the subjects did not know what the experiment was going to 
be about until they showed up. Many of the subjects would then likely leave the 
experiment resulting in a biased sample.

Undercoverage Bias
A common type of sampling bias is to sample too few observations from a segment 
of the population. A commonly-cited example of undercoverage is the poll taken 
by the Literary Digest in 1936 that indicated that Landon would win an election 
against Roosevelt by a large margin when, in fact, it was Roosevelt who won by a 
large margin. A common explanation is that poorer people were undercovered 
because they were less likely to have telephones and that this group was more 
likely to support Roosevelt.

A detailed analysis by Squire (1988) showed that it was not just an 
undercoverage bias that resulted in the faulty prediction of the election results. He 
concluded that, in addition to the undercoverage described above, there was a 
nonresponse bias (a form of self-selection bias) such that those favoring Landon 
were more likely to return their survey than were those favoring Roosevelt.

Survivorship Bias
Survivorship bias occurs when the observations recorded at the end of the 
investigation are a non-random set of those present at the beginning of the 
investigation. Gains in stock funds is an area in which survivorship bias often plays 
a role. The basic problem is that poorly-performing funds are often either 
eliminated or merged into other funds. Suppose one considers a sample of stock 
funds that exist in the present and then calculates the mean 10-year appreciation of 
those funds. Can these results be validly generalized to other stock funds of the 
same type? The problem is that the poorly-performing stock funds that are not still 
in existence (did not survive for 10 years) are not included. Therefore, there is a 
bias toward selecting better-performing funds. There is good evidence that this 
survivorship bias is substantial (Malkiel, 1995).

In World War II, the statistician Abraham Wald analyzed the distribution of 
hits from anti-aircraft fire on aircraft returning from missions. The idea was that 
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this information would be useful for deciding where to place extra armor. A naive 
approach would be to put armor at locations that were frequently hit to reduce the 
damage there. However, this would ignore the survivorship bias occurring because 
only a subset of aircraft return. Wald's approach was the opposite: if there were few 
hits in a certain location on returning planes, then hits in that location were likely 
to bring a plane down. Therefore, he recommended that locations without hits on 
the returning planes should be given extra armor. A detailed and mathematical 
description of Wald's work can be found in Mangel and Samaniego (1984.)
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Experimental Designs
by David M. Lane

Prerequisites
• Chapter 1: Variables

Learning Objectives
1. Distinguish between between-subject and within-subject designs
2. State the advantages of within-subject designs
3. Define “multi-factor design” and “factorial design”
4. Identify the levels of a variable in an experimental design
5. Describe when counterbalancing is used
There are many ways an experiment can be designed. For example, subjects can all 
be tested under each of the treatment conditions or a different group of subjects can 
be used for each treatment. An experiment might have just one independent 
variable or it might have several. This section describes basic experimental designs 
and their advantages and disadvantages.

Between-Subjects Designs
In a between-subjects design, the various experimental treatments are given to 
different groups of subjects. For example, in the “Teacher Ratings” case study, 
subjects were randomly divided into two groups. Subjects were all told they were 
going to see a video of an instructor's lecture after which they would rate the 
quality of the lecture. The groups differed in that the subjects in one group were 
told that prior teaching evaluations indicated that the instructor was charismatic 
whereas subjects in the other group were told that the evaluations indicated the 
instructor was punitive. In this experiment, the independent variable is 
“Condition” and has two levels (charismatic teacher and punitive teacher). It is a 
between-subjects variable because different subjects were used for the two levels 
of the independent variable: subjects were in either the “charismatic teacher” or the 
“punitive teacher” condition. Thus the comparison of the charismatic-teacher 
condition with the punitive-teacher condition is a comparison between the subjects 
in one condition with the subjects in the other condition.
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The two conditions were treated exactly the same except for the instructions 
they received. Therefore, it would appear that any difference between conditions 
should be attributed to the treatments themselves. However, this ignores the 
possibility of chance differences between the groups. That is, by chance, the raters 
in one condition might have, on average, been more lenient than the raters in the 
other condition. Randomly assigning subjects to treatments ensures that all 
differences between conditions are chance differences; it does not ensure there will 
be no differences. The key question, then, is how to distinguish real differences 
from chance differences. The field of inferential statistics answers just this 
question. The inferential statistics applicable to testing the difference between the 
means of the two conditions covered in Chapter 12. Analyzing the data from this 
experiment reveals that the ratings in the charismatic-teacher condition were higher 
than those in the punitive-teacher condition. Using inferential statistics, it can be 
calculated that the probability of finding a difference as large or larger than the one 
obtained if the treatment had no effect is only 0.018. Therefore it seems likely that 
the treatment had an effect and it is not the case that all differences were chance 
differences.

Independent variables often have several levels. For example, in the “Smiles 
and Leniency” case study, the independent variable is “type of smile” and there are 
four levels of this independent variable: (1) false smile, (2) felt smile, (3) miserable 
smile, and (4) a neutral control. Keep in mind that although there are four levels, 
there is only one independent variable. Designs with more than one independent 
variable are considered next.

Multi-Factor Between-Subject Designs
In the “Bias Against Associates of the Obese” experiment, the qualifications of 
potential job applicants were judged. Each applicant was accompanied by an 
associate. The experiment had two independent variables: the weight of the 
associate (obese or average) and the applicant's relationship to the associate (girl 
friend or acquaintance). This design can be described as an Associate's Weight (2) 
x Associate's Relationship (2) factorial design. The numbers in parentheses 
represent the number of levels of the independent variable. The design was a 
factorial design because all four combinations of associate's weight and associate's 
relationship were included. The dependent variable was a rating of the applicant's 
qualifications (on a 9-point scale).
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If two separate experiments had been conducted, one to test the effect of 
Associate's Weight and one to test the effect of Associate's Relationship then there 
would be no way to assess whether the effect of Associate's Weight depended on 
the Associate's Relationship. One might imagine that the Associate's Weight would 
have a larger effect if the associate were a girl friend rather than merely an 
acquaintance. A factorial design allows this question to be addressed. When the 
effect of one variable does differ depending on the level of the other variable then 
it is said that there is an interaction between the variables.

Factorial designs can have three or more independent variables. In order to 
be a between-subjects design there must be a separate group of subjects for each 
combination of the levels of the independent variables.

Within-Subjects Designs
A within-subjects design differs from a between-subjects design in that the same 
subjects perform at all levels of the independent variable. For example consider the 
“ADHD Treatment” case study. In this experiment, subjects diagnosed as having 
attention deficit disorder were each tested on a delay of gratification task after 
receiving methylphenidate (MPH). All subjects were tested four times, once after 
receiving one of the four doses. Since each subject was tested under each of the 
four levels of the independent variable “dose,” the design is a within-subjects 
design and dose is a within-subjects variable. Within-subjects designs are 
sometimes called repeated-measures designs.

Counterbalancing
In a within-subject design it is important not to confound the order in which a task 
is performed with the experimental treatment. For example, consider the problem 
that would have occurred if, in the ADHD study, every subject had received the 
doses in the same order starting with the lowest and continuing to the highest. It is 
not unlikely that experience with the delay of gratification task would have an 
effect. If practice on this task leads to better performance, then it would appear that 
higher doses caused the better performance when, in fact, it was the practice that 
caused the better performance.

One way to address this problem is to counterbalance the order of 
presentations. In other words, subjects would be given the doses in different orders 
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in such a way that each dose was given in each sequential position an equal 
number of times. An example of counterbalancing is shown in Table 1. 

Table 1. Counterbalanced order for four subjects.

Subject 0 mg/kg .15 mg/kg .30 mg/kg .60 mg/kg

1 First Second Third Fourth

2 Second Third Fourth First

3 Third Fourth First Second

4 Fourth First Second Third

It should be kept in mind that counterbalancing is not a satisfactory solution if 
there are complex dependencies between which treatment precedes which and the 
dependent variable. In these cases, it is usually better to use a between-subjects 
design than a within-subjects design.

Advantage of Within-Subjects Designs
An advantage of within-subjects designs is that individual differences in subjects' 
overall levels of performance are controlled. This is important because subjects 
invariably will differ greatly from one another. In an experiment on problem 
solving, some subjects will be better than others regardless of the condition they 
are in. Similarly, in a study of blood pressure some subjects will have higher blood 
pressure than others regardless of the condition. Within-subjects designs control 
these individual differences by comparing the scores of a subject in one condition 
to the scores of the same subject in other conditions. In this sense each subject 
serves as his or her own control. This typically gives within-subjects designs 
considerably more power than between-subjects designs. That is, this makes 
within-subjects designs more able to detect an effect of the independent variable 
than are between-subjects designs.

Within-subjects designs are often called “repeated-measures” designs since 
repeated measurements are taken for each subject. Similarly, a within-subject 
variable can be called a repeated-measures factor.
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Complex Designs
Designs can contain combinations of between-subject and within-subject variables. 
For example, the “Weapons and Aggression” case study has one between-subject 
variable (gender) and two within-subject variables (the type of priming word and 
the type of word to be responded to).
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Causation
by David M. Lane

Prerequisites
• Chapter 1: What are Statistics
• Chapter 3: Measures of Variability
• Chapter 4: Pearson's Correlation
• Chapter 6: Experimental Designs

Learning Objectives
1. Explain how experimentation allows causal inferences
2. Explain the role of unmeasured variables
3. Explain the “third-variable” problem
4. Explain how causation can be inferred in non-experimental designs
The concept of causation is a complex one in the philosophy of science. Since a 
full coverage of this topic is well beyond the scope of this text, we focus on two 
specific topics: (1) the establishment of causation in experiments and (2) the 
establishment of causation in non-experimental designs.

Establishing Causation in Experiments
Consider a simple experiment in which subjects are sampled randomly from a 
population and then assigned randomly to either the experimental group or the 
control group. Assume the condition means on the dependent variable differed. 
Does this mean the treatment caused the difference?

To make this discussion more concrete, assume that the experimental group 
received a drug for insomnia, the control group received a placebo, and the 
dependent variable was the number of minutes the subject slept that night. An 
obvious obstacle to inferring causality is that there are many unmeasured variables 
that affect how many hours someone sleeps. Among them are how much stress the 
person is under, physiological and genetic factors, how much caffeine they 
consumed, how much sleep they got the night before, etc. Perhaps differences 
between the groups on these factors are responsible for the difference in the 
number of minutes slept.

At first blush it might seem that the random assignment eliminates 
differences in unmeasured variables. However, this is not the case. Random 
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assignment ensures that differences on unmeasured variables are chance 
differences. It does not ensure that there are no differences. Perhaps, by chance, 
many subjects in the control group were under high stress and this stress made it 
more difficult to fall asleep. The fact that the greater stress in the control group was 
due to chance does not mean it could not be responsible for the difference between 
the control and the experimental groups. In other words, the observed difference in 
“minutes slept” could have been due to a chance difference between the control 
group and the experimental group rather than due to the drug's effect.

This problem seems intractable since, by definition, it is impossible to 
measure an “unmeasured variable” just as it is impossible to measure and control 
all variables that affect the dependent variable. However, although it is impossible 
to assess the effect of any single unmeasured variable, it is possible to assess the 
combined effects of all unmeasured variables. Since everyone in a given condition 
is treated the same in the experiment, differences in their scores on the dependent 
variable must be due to the unmeasured variables. Therefore, a measure of the 
differences among the subjects within a condition is a measure of the sum total of 
the effects of the unmeasured variables. The most common measure of differences 
is the variance. By using the within-condition variance to assess the effects of 
unmeasured variables, statistical methods determine the probability that these 
unmeasured variables could produce a difference between conditions as large or 
larger than the difference obtained in the experiment. If that probability is low, then 
it is inferred (that's why they call it inferential statistics) that the treatment had an 
effect and that the differences are not entirely due to chance. Of course, there is 
always some nonzero probability that the difference occurred by chance so total 
certainty is not a possibility.

Causation in Non-Experimental Designs
It is almost a cliché that correlation does not mean causation. The main fallacy in 
inferring causation from correlation is called the “third-variable problem” and 
means that a third variable is responsible for the correlation between two other 
variables. An excellent example used by Li (1975) to illustrate this point is the 
positive correlation in Taiwan in the 1970's between the use of contraception and 
the number of electric appliances in one's house. Of course, using contraception 
does not induce you to buy electrical appliances or vice versa. Instead, the third 
variable of education level affects both.
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Does the possibility of a third-variable problem make it impossible to draw 
causal inferences without doing an experiment? One approach is to simply assume 
that you do not have a third-variable problem. This approach, although common, is 
not very satisfactory. However, be aware that the assumption of no third-variable 
problem may be hidden behind a complex causal model that contains sophisticated 
and elegant mathematics.

A better though, admittedly more difficult approach, is to find converging 
evidence. This was the approach taken to conclude that smoking causes cancer. 
The analysis included converging evidence from retrospective studies, prospective 
studies, lab studies with animals, and theoretical understandings of cancer causes.

A second problem is determining the direction of causality. A correlation 
between two variables does not indicate which variable is causing which. For 
example, Reinhart and Rogoff (2010) found a strong correlation between public 
debt and GDP growth. Although some have argued that public debt slows growth, 
most evidence supports the alternative that slow growth increases public debt.
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Statistical Literacy
by David M. Lane

Prerequisites
• Chapter 6: Causation

A low level of HDL have long been known to be a risk factor for heart disease. 
Taking niacin has been shown to increase HDL levels and has been recommended 
for patients with low levels of HDL. The assumption of this recommendation is 
that niacin causes HDL to increase thus causing a lower risk for heart disease.

What do you think?
What experimental design involving niacin would test whether the relationship 
between HDL and heart disease is causal?

You could randomly assign patients with low levels of  HDL to a 
condition in which they received niacin or to one in which they 
did not. A finding that niacin increased HDL without 
decreasing heart disease would cast doubt on the causal 
relationship. This is exactly what was found in a study 
conducted by the NIH. See the description of  the results here.
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Exercises

1. To be a scientific theory, the theory must be potentially ______________.
2. What is the difference between a faith-based explanation and a scientific 

explanation?
3. What does it mean for a theory to be parsimonious?
4. Define reliability in terms of parallel forms.
5. Define true score.
6. What is the reliability if the true score variance is 80 and the test score 

variance is 100?
7. What statistic relates to how close a score on one test will be to a score on a 

parallel form?
8. What is the effect of test length on the reliability of a test?
9. Distinguish between predictive validity and construct validity.
10. What is the theoretical maximum correlation of a test with a criterion if the 

test has a reliability of .81?
11. An experiment solicits subjects to participate in a highly stressful experiment. 

What type of sampling bias is likely to occur?
12. Give an example of survivorship bias not presented in this text.
13. Distinguish “between-subject” variables from “within-subjects” variables.
14. Of the variables “gender” and “trials,” which is likely to be a between-subjects 

variable and which a within-subjects variable?
15. Define interaction.
16. What is counterbalancing used for?
17. How does randomization deal with the problem of pre-existing differences 

between groups?
18. Give an example of the “third-variable problem” other than those in this text.
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