
16. Transformations

A.  Log
B.  Tukey's Ladder of Powers
C.  Box-Cox Transformations
D.  Exercises 
The focus of statistics courses is the exposition of appropriate methodology to 
analyze data to answer the question at hand. Sometimes the data are given to you, 
while other times the data are collected as part of a carefully-designed experiment. 
Often the time devoted to statistical analysis is less than 10% of the time devoted 
to data collection and preparation. If aspects of the data preparation fail, then the 
success of the analysis is in jeopardy. Sometimes errors are introduced into the 
recording of data. Sometimes biases are inadvertently introduced in the selection of 
subjects or the mis-calibration of monitoring equipment. 
	

 In this chapter, we focus on the fact that many statistical procedures work 
best if individual variables have certain properties. The measurement scale of a 
variable should be part of the data preparation effort. For example, the correlation 
coefficient does not require the variables have a normal shape, but often 
relationships can be made clearer by re-expressing the variables. An economist 
may choose to analyze the logarithm of prices if the relative price is of interest. A 
chemist may choose to perform a statistical analysis using the inverse temperature 
as a variable rather than the temperature itself. But note that the inverse of a 
temperature will differ depending on whether it is measured in °F, °C, or °K.

The introductory chapter covered linear transformations. These 
transformations normally do not change statistics such as Pearson’s r, although 
they do affect the mean and standard deviation. The first section here is on log 
transformations which are useful to reduce skew. The second section is on Tukey’s 
ladder of powers. You will see that log transformations are a special case of the 
ladder of powers. Finally, we cover the relatively advanced topic of the Box-Cox 
transformation.
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Log Transformations
by David M. Lane

Prerequisites
• Chapter 1: Logarithms
• Chapter 1: Shapes of Distributions
• Chapter 3: Additional Measures of Central Tendency
• Chapter 4: Introduction to Bivariate Data

Learning Objectives
1. State how a log transformation can help make a relationship clear
2. Describe the relationship between logs and the geometric mean

The log transformation can be used to make highly skewed distributions less 
skewed. This can be valuable both for making patterns in the data more 
interpretable and for helping to meet the assumptions of inferential statistics.

Figure 1 shows an example of how a log transformation can make patterns 
more visible. Both graphs plot the brain weight of animals as a function of their 
body weight. The raw weights are shown in the upper panel; the log-transformed 
weights are plotted in the lower panel.
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body weights: Bivariate of Log(Brain) by log(body) Page 1 of 1
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Figure 1. Scatter plots of brain weight as a function of body weight in terms 
of both raw data (upper panel) and log-transformed data (lower 
panel).

It is hard to discern a pattern in the upper panel whereas the strong relationship is 
shown clearly in the lower panel.

The comparison of the means of log-transformed data is actually a 
comparison of geometric means. This occurs because, as shown below, the anti-log 
of the arithmetic mean of log-transformed values is the geometric mean.

Table 1 shows the logs (base 10) of the numbers 1, 10, and 100. The 
arithmetic mean of the three logs is

(0 + 1 + 2)/3 = 1

The anti-log of this arithmetic mean of 1 is:

101 = 10
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which is the geometric mean:

(1 x 10 x 100).3333 = 10.

Table 1. Logarithms.

X Log10(X)
1

10
100

0
1
2

Therefore, if the arithmetic means of two sets of log-transformed data are equal 
then the geometric means are equal.
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Tukey Ladder of  Powers
by David W. Scott

Prerequisites
• Chapter 1: Logarithms 
• Chapter 4: Bivariate Data
• Chapter 4: Values of Pearson Correlation 
• Chapter 12: Independent Groups t Test
• Chapter 13: Introduction to Power
• Chapter 16: Tukey Ladder of Powers

Learning Objectives
1. Give the Tukey ladder of transformations
2. Find a transformation that reveals a linear relationship
3. Find a transformation to approximate a normal distribution

Introduction
We assume we have a collection of bivariate data

(x1,y1),(x2,y2),...,(xn,yn)

and that we are interested in the relationship between variables x and y. Plotting the 
data on a scatter diagram is the first step. As an example, consider the population of 
the United States for the 200 years before the Civil War. Of course, the decennial 
census began in 1790. These data are plotted two ways in Figure 1. Malthus 
predicted that geometric growth of populations coupled with arithmetic growth of 
grain production would have catastrophic results. Indeed the US population 
followed an exponential curve during this period.
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2 Tukey’s Transformation Ladder

We assume we have a collection of bivariate data
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and that we are interested in the relationship between variables x and y.
Plotting the data on a scatter diagram is first step.

As an example, consider the population of the United States for the 200
years before the Civil War. Of course, the decennial census began in 1790.
These data are plotted two ways in Figure 1. Malthus predicted that geomet-
ric growth of populations coupled with arithmetic growth of grain production
would have catastrophic results. Indeed the US population followed an ex-
ponential curve during this period.
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Figure 1: The US population from 1670 - 1860 on graph and semi-log scales.

Tukey (1977) describes an orderly way of re-expressing variables using a
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Figure 1. The US population from 1670 - 1860. The Y-axis on the right panel 
is on a log scale.

Tukey's Transformation Ladder
Tukey (1977) describes an orderly way of re-expressing variables using a power 
transformation. You may be familiar with polynomial regression (a form of 
multiple regression) in which the simple linear model y = b0 + b1X is extended 
with terms such as b2x2 + b3x3 + b4x4. Alternatively, Tukey suggests exploring 
simple relationships such as

y = b0 + b1Xλ or yλ = b0 + b1X (Equation 1)

where λ is a parameter chosen to make the relationship as close to a straight line as 
possible. Linear relationships are special, and if a transformation of the type xλ or 
yλ works as in Equation (1), then we should consider changing our measurement 
scale for the rest of the statistical analysis.

There is no constraint on values of λ that we may consider. Obviously 
choosing λ = 1 leaves the data unchanged. Negative values of λ are also 
reasonable. For example, the relationship

y = b0 + b1/x

would be represented by λ = −1. The value λ = 0 has no special value, since X0 = 1, 
which is just a constant. Tukey (1977) suggests that it is convenient to simply 
define the transformation when λ = 0 to be the logarithm function rather than the 
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constant 1. We shall revisit this convention shortly. The following table gives 
examples of the Tukey ladder of transformations.

Table 1. Tukey's Ladder of Transformations

the type x

� or y

� works as in Equation (1), then we should consider changing
our measurement scale for the rest of the statistical analysis.

There is no constraint on values of � that we may consider. Obviously
choosing � = 1 leaves the data unchanged. Negative values of � are also
reasonable. For example, the relationship

y = b

0

+
b

1

x

would be represented by � = �1. The value � = 0 has no special value, since
x

0 = 1, which is just a constant. Tukey (1977) suggests that it is convenient
to simply define the transformation when � = 0 to be the logarithm function
rather than the constant 1. We shall revisit this convention shortly. The
following table gives examples of the Tukey ladder of transformations.

Table 1: Tukey’s Ladder of Transformation

� -2 -1 -1/2 0 1/2 1 2

Xfm 1

x

2
1

x

1p
x

log x

p
x x x

2

If x takes on negative values, then special care must be taken so that
the transformations make sense, if possible. We generally limit ourselves to
variables where x > 0 to avoid these considerations.

Also, if the transformation parameter is negative, then the transformed
variable x

� is reversed. For example, if x is increasing, then 1/x is decreasing.
We choose to redefine the Tukey transformation to be �x

� if � < 0 in order to
preserve the order of the variable after transformation. Formally, the Tukey
transformation is defined to be

x̃

�

=

8
<

:

x

� if � > 0
log x if � = 0
�(x�) if � < 0

(2)

In Table 2 we reproduce Table 1 but using the modified definition when
� < 0.

3

If x takes on negative values, then special care must be taken so that the 
transformations make sense, if possible. We generally limit ourselves to variables 
where x > 0 to avoid these considerations. For some dependent variables such as 
the number of errors, it is convenient to add 1 to x before applying the 
transformation.

Also, if the transformation parameter λ is negative, then the transformed 
variable xλ is reversed. For example, if x is increasing, then 1/x is decreasing. We 
choose to redefine the Tukey transformation to be -(xλ) if λ < 0 in order to preserve 
the order of the variable after transformation. Formally, the Tukey transformation 
is defined as

the type x

� or y

� works as in Equation (1), then we should consider changing
our measurement scale for the rest of the statistical analysis.

There is no constraint on values of � that we may consider. Obviously
choosing � = 1 leaves the data unchanged. Negative values of � are also
reasonable. For example, the relationship

y = b
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1

x

would be represented by � = �1. The value � = 0 has no special value, since
x

0 = 1, which is just a constant. Tukey (1977) suggests that it is convenient
to simply define the transformation when � = 0 to be the logarithm function
rather than the constant 1. We shall revisit this convention shortly. The
following table gives examples of the Tukey ladder of transformations.
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If x takes on negative values, then special care must be taken so that
the transformations make sense, if possible. We generally limit ourselves to
variables where x > 0 to avoid these considerations.

Also, if the transformation parameter is negative, then the transformed
variable x

� is reversed. For example, if x is increasing, then 1/x is decreasing.
We choose to redefine the Tukey transformation to be �x

� if � < 0 in order to
preserve the order of the variable after transformation. Formally, the Tukey
transformation is defined to be

x̃
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=
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(2)

In Table 2 we reproduce Table 1 but using the modified definition when
� < 0.
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In Table 2 we reproduce Table 1 but using the modified definition when λ < 0.

Table 2. Modified Tukey's Ladder of Transformations 
Table 2: Modified Tukey’s Ladder of Transformation

� -2 -1 -1/2 0 1/2 1 2

Xfm �1

x

2
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x

�1p
x

log x

p
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3 The Best Transformation

The goal is to find a value of � that makes the scatter diagram as linear as
possible. For the US population, the logarithmic transformation applied to
y makes the relationship almost perfectly linear. The red dashed line in the
right frame of Figure 1 has a slope of about 1.35; that is, the US population
grew at a rate of about 35% per decade.

The logarithmic transformation corresponds to the choice � = 0 by
Tukey’s convention. In Figure 2, we display the scatter diagram (x, ỹ

�

) of
the US population data for other choices of �.
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Figure 2: The US population from 1670 to 1860 for various values of �.

The raw data are plotted in the bottom right frame of Figure 2 when
� = 1. The logarithmic fit is in the upper right frame when � = 0. Notice how
the scatter diagram smoothly morphs from concave to convex as � increases.
Thus intuitively there is a unique best choice of � corresponding to the “most
linear” graph.
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The Best Transformation for Linearity
The goal is to find a value of λ that makes the scatter diagram as linear as possible. 
For the US population, the logarithmic transformation applied to y makes the 
relationship almost perfectly linear. The red dashed line in the right frame of Figure 
1 has a slope of about 1.35; that is, the US population grew at a rate of about 35% 
per decade.

The logarithmic transformation corresponds to the choice λ = 0 by Tukey's 
convention. In Figure 2, we display the scatter diagram of the US population data 
for λ = 0 as well as for other choices of λ.

Table 2: Modified Tukey’s Ladder of Transformation

� -2 -1 -1/2 0 1/2 1 2

Xfm �1

x

2
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x

�1p
x

log x

p
x x x

2

3 The Best Transformation

The goal is to find a value of � that makes the scatter diagram as linear as
possible. For the US population, the logarithmic transformation applied to
y makes the relationship almost perfectly linear. The red dashed line in the
right frame of Figure 1 has a slope of about 1.35; that is, the US population
grew at a rate of about 35% per decade.

The logarithmic transformation corresponds to the choice � = 0 by
Tukey’s convention. In Figure 2, we display the scatter diagram (x, ỹ

�

) of
the US population data for other choices of �.
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Figure 2: The US population from 1670 to 1860 for various values of �.

The raw data are plotted in the bottom right frame of Figure 2 when
� = 1. The logarithmic fit is in the upper right frame when � = 0. Notice how
the scatter diagram smoothly morphs from concave to convex as � increases.
Thus intuitively there is a unique best choice of � corresponding to the “most
linear” graph.

4

Figure 2. The US population from 1670 to 1860 for various values of λ.

The raw data are plotted in the bottom right frame of Figure 2 when λ = 1. The 
logarithmic fit is in the upper right frame when λ = 0. Notice how the scatter 
diagram smoothly morphs from convex to concave as λ increases. Thus intuitively 
there is a unique best choice of λ corresponding to the “most linear” graph.

One way to make this choice objective is to use an objective function for this 
purpose. One approach might be to fit a straight line to the transformed points and 
try to minimize the residuals. However, an easier approach is based on the fact that 
the correlation coefficient, r, is a measure of the linearity of a scatter diagram. In 
particular, if the points fall on a straight line then their correlation will be r = 1. 
(We need not worry about the case when r = −1 since we have defined the Tukey 
transformed variable xλ to be positively correlated with x itself.)
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In Figure 3, we plot the correlation coefficient of the scatter diagram 

One way to make this choice objective is to use an objective function for
this purpose. One approach might be to fit a straight line to the transformed
points and try to minimize the residuals. However, a easier approach is
to recall that the correlation coe�cient is a measure of the linearity of a
scatter diagram. In particular, if the points fall on a straight line then their
correlation will be ⇢ = 1. (We need not worry about the case when ⇢ = �1
since we have defined the Tukey transformed variable x̃

�

to be positively
correlated with x itself.)

In Figure 3, we plot the correlation coe�cient of the scatter diagram
(x, ỹ

�

) as a function of �. It is clear that the logarithmic transformation
(� = 0) is nearly optimal by this criterion.
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Figure 3: Graph of US population correlation coe�cient as function of �.

Is the US population still on the same exponential growth pattern? In
Figure 4 we display the US population from 1630 to 2000 using the transfor-
mation and fit as in the right frame of Figure 1. Fortunately, the exponential
growth (or at least its rate) was not sustained into the Twentieth Century.
If it had, the US population in the year 2000 would have been over 2 billion
(2.07 to be exact), larger than the population of China.
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(2.07 to be exact), larger than the population of China.
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Figure 3. Graph of US population correlation coefficient as function of λ.

Is the US population still on the same exponential growth pattern? In Figure 4 we 
display the US population from 1630 to 2000 using the transformation and fit used 
in the right frame of Figure 1. Fortunately, the exponential growth (or at least its 
rate) was not sustained into the Twentieth Century. If it had, the US population in 
the year 2000 would have been over 2 billion (2.07 to be exact), larger than the 
population of China.
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Figure 4: Graph of US population 1630-2000 with � = 0.

We can examine the decennial census population figures of individual
states as well. In Figure 5 we display the population data for the state of
New York from 1790 to 2000, together with an estimate of the population in
2008. Clearly something unusual happened starting in 1970. (This began the
period of mass migration to the West and South as the rust belt industries
began to shut down.) Thus we compute the best � value using the data from
1790-1960 in the middle frame of Figure 5. The right frame displays the
transformed data, together with the linear fit for the 1790-1960 period. The
physical value of � = 0.41 is not obvious and one might reasonably choose
to use � = 0.50 for practical reasons.
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We can examine the decennial census population figures of individual states as 
well. In Figure 5 we display the population data for the state of New York from 
1790 to 2000, together with an estimate of the population in 2008. Clearly 
something unusual happened starting in 1970. (This began the period of mass 
migration to the West and South as the rust belt industries began to shut down.) 
Thus, we compute the best λ value using the data from 1790-1960 in the middle 
frame of Figure 5. The right frame displays the transformed data, together with the 
linear fit for the 1790-1960 period. The value of λ = 0.41 is not obvious and one 
might reasonably choose to use λ = 0.50 for practical reasons.
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We can examine the decennial census population figures of individual
states as well. In Figure 5 we display the population data for the state of
New York from 1790 to 2000, together with an estimate of the population in
2008. Clearly something unusual happened starting in 1970. (This began the
period of mass migration to the West and South as the rust belt industries
began to shut down.) Thus we compute the best � value using the data from
1790-1960 in the middle frame of Figure 5. The right frame displays the
transformed data, together with the linear fit for the 1790-1960 period. The
physical value of � = 0.41 is not obvious and one might reasonably choose
to use � = 0.50 for practical reasons.
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Figure 5. Graphs related to the New York state population 1790-2008.
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If we look at one of the younger states in the West, the picture is different. Arizona 
has attracted many retirees and immigrants. Figure 6 summarizes our findings. 
Indeed, the growth of population in Arizona is logarithmic, and appears to still be 
logarithmic through 2005.

If we look at one of the younger states in the West, the picture is di↵erent.
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4 Box-Cox Transformation

George Box and Sir David Cox collaborated on one paper (Box, 1964). The
story is that while Cox was visiting Box at Wisconsin, they decided they
should write a paper together because of the similarity of their names (and
that both are British). In fact, Professor Box is married to the daughter of
Sir Ronald Fisher.
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Figure 6. Graphs related to the Arizona state population 1910-2005.

Reducing Skew
Many statistical methods such as t tests and the analysis of variance assume normal 
distributions. Although these methods are relatively robust to violations of 
normality, transforming the distributions to reduce skew can markedly increase 
their power.

As an example, the data in the “Stereograms” case study is very skewed. A t 
test of the difference between the two conditions using the raw data results in a p 
value of 0.056, a value not conventionally considered significant. However, after a 
log transformation (λ = 0) that reduces the skew greatly, the p value is 0.023 which 
is conventionally considered significant.

The demonstration in Figure 7 shows distributions of the data from the 
Stereograms case study as transformed with various values of λ. Decreasing λ 
makes the distribution less positively skewed. Keep in mind that λ = 1 is the raw 
data. Notice that there is a slight positive skew for λ = 0 but much less skew than 
found in the raw data (λ = 1). Values of below 0 result in negative skew.
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Figure 7. Distribution of data from the Stereogram case study for various 
values of λ.
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Box-Cox Transformations
by David Scott

Prerequisites
This section assumes a higher level of mathematics background than most other 
sections of this work. 
• Chapter 1: Logarithms 
• Chapter 3: Additional Measures of Central Tendency (Geometic Mean)
• Chapter 4: Bivariate Data
• Chapter 4: Values of Pearson Correlation 
• Chapter 16: Tukey Ladder of Powers

George Box and Sir David Cox collaborated on one paper (Box, 1964). The story 
is that while Cox was visiting Box at Wisconsin, they decided they should write a 
paper together because of the similarity of their names (and that both are British). 
In fact, Professor Box is married to the daughter of Sir Ronald Fisher.

The Box-Cox transformation of the variable x is also indexed by λ, and is 
defined as

If we look at one of the younger states in the West, the picture is di↵erent.
Arizona has attracted many retirees and immigrants. Figure 6 summarizes
our findings. Indeed, the growth of population in Arizona is logarithmic, and
appears to still be logarithmic through 2005.
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(Equation 1)

At first glance, although the formula in Equation (1) is a scaled version of the 
Tukey transformation xλ, this transformation does not appear to be the same as the 
Tukey formula in Equation (2). However, a closer look shows that when λ < 0, 
both xλ and xʹ′λ change the sign of xλ to preserve the ordering. Of more interest is 
the fact that when λ = 0, then the Box-Cox variable is the indeterminate form 0/0. 
Rewriting the Box-Cox formula as
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as λ → 0. This same result may also be obtained using l'Hôpital's rule from your 
calculus course. This gives a rigorous explanation for Tukey's suggestion that the 
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log transformation (which is not an example of a polynomial transformation) may 
be inserted at the value λ = 0.

Notice with this definition of xʹ′λ that x = 1 always maps to the point xʹ′λ = 0 
for all values of λ. To see how the transformation works, look at the examples in 
Figure 1. In the top row, the choice λ = 1 simply shifts x to the value x−1, which is 
a straight line. In the bottom row (on a semi-logarithmic scale), the choice λ = 0 
corresponds to a logarithmic transformation, which is now a straight line. We 
superimpose a larger collection of transformations on a semi-logarithmic scale in 
Figure 2.

as �! 0. This same result may also be obtained using l’Hopital’s rule from
your calculus course. This gives a rigorous explanation for Tukey’s sugges-
tion that the log transformation (which is not an example of a polynomial
transformation) may be inserted at the value � = 0.

Notice with this definition of x

0
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that x = 1 always maps to the point
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0
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= 0 for all values of �. To see how the transformation works, look at the
examples in Figure 7. In the top row, the choice � = 1 simply shifts x to the
value x�1, which is a straight line. In the bottom row (on a semi-logarithmic
scale), the choice � = 0 corresponds to a logarithmic transformation, which
is now a straight line. We superimpose a larger collection of transformation
on a semi-logarithmic scale in Figure 8.
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Figure 7: Examples of the Box-Cox transformation x

0
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versus x for � =
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0
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is plotted against log(x). The red point is at
(1, 0).
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Figure 1. Examples of the Box-Cox transformation xʹ′λ versus x for λ = −1, 0, 
1. In the second row, xʹ′λ is plotted against log(x). The red point is at 
(1, 0).
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5 Transformation to Normality

Another important use of variable transformation is to eliminate skewness
and other distributional features that complicate analysis. Often the goal is
to find a simple transformation that leads to normality.

In the article on q-q plots, we discuss how to assess the normality of a set
of data,

x

1

, x

2

, . . . , x

n

.

Data that are normal lead to a straight line on the q-q plot. Since the
correlation coe�cient is maximized when a scatter diagram is linear, we can
use the same approach above to find the most normal transformation.

9

Figure 2. Examples of the Box-Cox transformation  versus log(x) for −2 < λ 
< 3. The bottom curve corresponds to λ = −2 and the upper to λ = 3.

Transformation to Normality
Another important use of variable transformation is to eliminate skewness and 
other distributional features that complicate analysis. Often the goal is to find a 
simple transformation that leads to normality. In the article on q-q plots, we discuss 
how to assess the normality of a set of data,

x1,x2,...,xn.

Data that are normal lead to a straight line on the q-q plot. Since the correlation 
coefficients maximized when a scatter diagram is linear, we can use the same 
approach above to find the most normal transformation.
Specifically, we form the n pairs
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As an example, consider a large sample of British household incomes

taken in 1973, normalized to have mean equal to one (n = 7125). Such data
are often strongly skewed, as is clear from Figure 9. The data were sorted
and paired with the 7125 normal quantiles. The value of � that gave the
greatest correlation (r = 0.9944) was � = 0.21.
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Figure 9: (L) Density plot of the 1973 British income data. (R) The best
value of � is 0.21.

The kernel density plot of the optimally transformed data is shown in the
left frame of Figure 10. While this figure is much less skewed than in Figure
9, there is clearly an extra “component” in the distribution that might reflect
the poor. Economists often analyze the logarithm of income corresponding
to � = 0; see Figure 10. The correlation is only r = 0.9901 in this case, but
for convenience, the log-transform probably will be preferred.
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The kernel density plot of the optimally transformed data is shown in the
left frame of Figure 10. While this figure is much less skewed than in Figure
9, there is clearly an extra “component” in the distribution that might reflect
the poor. Economists often analyze the logarithm of income corresponding
to � = 0; see Figure 10. The correlation is only r = 0.9901 in this case, but
for convenience, the log-transform probably will be preferred.

10

Figure 3. (L) Density plot of the 1973 British income data. (R) The best 
value of λ is 0.21.

The kernel density plot of the optimally transformed data is shown in the left frame 
of Figure 4. While this figure is much less skewed than in Figure 3, there is clearly 
an extra “component” in the distribution that might reflect the poor. Economists 
often analyze the logarithm of income corresponding to λ = 0; see Figure 4. The 
correlation is only r = 0.9901 in this case, but for convenience, the log-transform 
probably will be preferred.
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Figure 10: (L) Density plot of the 1973 British income data transformed with
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⇤ = 0.21. (R) The log-transform with � = 0.
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λ = 0.21. (R) The log-transform with λ = 0.
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Of course, one can simultaneously transform both the predictor and the
response variables. For more examples and discussions, see Kutner et al.
(2004).
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Statistical Literacy
by David M. Lane

Prerequisites
• Chapter 16: Logarithms

Many financial web pages give you the option of using a linear or a logarithmic Y-
axis. An example from Google Finance is shown below.

What do you think?
To get a straight line with the linear option chosen, the price would have to go up 
the same amount every time period. What would result in a straight line with the 
logarithmic option chosen?

The price would have to go up the same proportion every time 
period. For example, go up 0.1% every day.
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Exercises

Prerequisites
All Content in This Chapter
1. When is a log transformation valuable?

2. If the arithmetic mean of log10 transformed data were 3, what would be the 
geometric mean?

3. Using Tukey's ladder of transformation, transform the following data using a λ 
of  0.5: 9, 16, 25

4. What value of  λ in Tukey's ladder decreases skew the most?

5. What value of  λ in Tukey's ladder increases skew the most?

6. In the ADHD case study, transform the data in the placebo condition (D0) with 
λ's of .5, 0, -.5, and -1. How does the skew in each of these compare to the skew 
in the raw data. Which transformation leads to the least skew?
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