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Tests Supplementing ANOVA

Prerequisites
One-Factor ANOVA, Multi-Factor ANOVA, Pairwise Comparisons Among Means,
Specific Comparisons Among Means

The null hypothesis tested in a one-factor ANOVA is that all the population
means are equal. Stated more formally,

H0: μ1 = μ2 = ... μk

where H0 is the null hypothesis and k is the number of conditions. When the
null hypothesis is rejected, then all that can be said is that at least one
population mean is different from at least one other population mean. The
methods described in the sections on All Pairwise Comparisons and on Specific
Comparisons for doing more specific tests apply here. Keep on mind that these
tests are valid whether or not they are preceded by an ANOVA.

Main Effects
As shown below, significant main effects in multi-factor designs can be
followed up in the same way as significant effects in a one-way designs. Table
1shows the data from an imaginary experiment with three levels of Factor A
and two levels of Factor B.

Table 1. Made Up Example Data.
A1 A2 A3

Marginal
Means

B1

5
4
6
5

Mean = 5

9
8
7
8

Mean = 8

7
9
9
8

Mean = 8.25

7.08

B2

4
3
6
8

Mean = 5.25

8
6
8
5

Mean = 6.75

8
9
7
6

Mean = 7.50

6.50

Marginal
Means

5.125 7.375 7.875 6.79

 
Table 2 shows the ANOVA Summary Table for these data. The significant main
effect of A indicates that, in the population, at least one of the marginal
means for A is different from at least one of the others.
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means for A is different from at least one of the others.

Table 2. ANOVA Summary Table for Made Up Example Data.
Source df SSQ MS F p

A 2 34.333 17.17 9.29 0.0017

B 1 2.042 2.04 1.10 0.3070

AB 2 2.333 1.167 0.63 0.5431

Error 18 33.250 1.847

Total 23 71.958 3.129

Just as the Tukey HSD can be used to test all pairwise comparisons among
means in a one-factor ANOVA, it can be used to test all pairwise Comparisons
among marginal means in a multi-factor ANOVA. The formula for the equal-
sample-size case is shown below.

where Mi and Mj are marginal means, MSE is the mean square error from the
ANOVA, and n is the number of scores each mean is based upon. For this
example,MSE = 1.847 and n= 8 because there are eight scores at each level of
A. The probability value can be computed using the Studentized Range
Calculator. The degrees of freedom is equal to the degrees of freedom error.
For this example, df = 18. The results of the Tukey HSD test are shown in Table
3. The mean for A1 is significantly lower than the mean for A2 and A3. The
means for A2 and A3 are not significantly different.

Table 3. Pairwise Comparisons Among Marginal Means for A.

Comparison Mi - Mj Q p

A1 - A2 -2.25 -4.68 0.0103

A1 - A3 -2.75 -5.73 0.0021

A2 - A3 -0.50 -1.04 0.7456

Specific comparisons among means are also carried out much the same way as
shown in the relevant section on testing means. The formula for L is
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where ci is the coefficient for the ith marginal mean and Mi is the ith marginal
mean. For example, to compare A1 with the average of A2 and A3, the
coefficients would be 1, -0.5, -0.5. Therefore,

L = (1)(5.125) + (-0.5)(7.375) + (-0.5)(7.875) = -2.5

To compute t, use:

 
= -4.25.

where MSE is the mean square error from the ANOVA and n is the number of
scores each marginal mean is based on (eight in this example). The degrees of
freedom is the degrees of freedom error from the ANOVA and is equal to 18.
Using the Online Calculator, we find that the two-tailed probability value is
0.0005. Therefore, the difference between A1 and the average of A2 and A3 is
significant.

Online Calculator: t distribution

Important issues concerning multiple comparisons and orthogonal
comparisons are discussed in the Specific Comparisons section in the Testing
Means chapter.

Interactions
The presence of a significant interaction makes the interpretation of the results
more complicated. Since an interaction means that the simple effects are
different, the main effect as the mean of the simple effects does not tell the
whole story. This section discusses how to describe interactions, proper and
improper uses of simple effects tests, and how to test components of
interactions.

DESCRIBING INTERACTIONS

A crucial step in understanding a significant interaction is constructing an
interaction plot. Figure 1 shows an interaction plot from data presented in the
section on Multi-factor ANOVA.
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section on Multi-factor ANOVA.

Figure 1. Interaction Plot for Made Up Data

The second step is to describe the interaction in a clear and understandable
way. This is often done by describing how by describing how the simple effects
differed. Since this should be done using as little jargon as possible, the word
"simple effect" need not appear in the description. An example is as follows:

The effect of Outcome differed depending on the subject's self
esteem. The difference between the attributions to self following
success and attributions to self following failure was larger for high-
self-esteem subjects (mean difference = 2.50) than for low-self-
esteem subjects (mean difference = -2.33).

No further analyses are helpful in understanding the interaction since the
interaction means only that the simple effects differ. The interaction's
significance indicates that the simple effects differ from each other, but
provides no information about whether they differ from zero.

SIMPLE EFFECT TESTS

It is not necessary to know whether the simple effects differ from zero in order
to understand an interaction because the question of whether simple effects
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to understand an interaction because the question of whether simple effects
differ from zero has nothing to do with interaction except that if they are both
zero there is no interaction. It is not uncommon to see research articles in
which the authors report that they analyzed simple effects in order to explain
the interaction. However, this is not a correct since an interaction does not
depend on the analysis of the simple effects.

However, there is a reason to test simple effects following a significant
interaction. Since an interaction indicates that simple effects differ, it means
that the main effects are not general. In the made-up example, the main effect
of Outcome is not very informative, and the effect of outcome should be
considered separately for high- and low-self-esteem subjects.

As will be seen, the simple effects of Outcome are significant and in
opposite directions: Success significantly increases attribution to self for high-
self-esteem subjects and significantly lowers attribution to self for low-self-
esteem subjects. This is a very easy result to interpret.

What would the interpretation have been if neither simple effect had been
significant? On the surface, this seems impossible: How can the simple effects
both be zero if they differ from each other significantly as tested by the
interaction? The answer is that a non-significant simple effect does not mean
that the simple effect is zero: the null hypothesis should not be accepted just
because it is not rejected

(See section on Interpreting Non-Significant Results)

If neither simple effect is significant, the conclusion should be that the
simple effects differ, and that at least one of them is not zero. However, no
conclusion should be drawn about which simple effect(s) is/are not zero.

Another error that can be made by mistakenly accepting the null
hypothesis is to conclude that two simple effects are different because one is
significant and the other is not. Consider the results of an imaginary experiment
in which the researcher hypothesized that addicted people would show a larger
increase in brain activity following some treatment than would non-addicted
people. In other words, the researcher hypothesized that addiction status and
treatment would interact. The results shown in Figure 2 are very much in line
with the hypothesis. However, the test of the interaction resulted in a
probability value of 0.08, a value not quite low enough to be significant at the
conventional 0.05 level. The proper conclusion is that the experiment supports
the researcher's hypothesis, but not strongly enough to allow a firm conclusion.
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Figure 2. Made-up Data with One
Significant Simple Effect.

Unfortunately, the researcher was not satisfied with such a weak conclusion
and went on to test the simple effects. It turned out that the effect of
Treatment was significant for the Addicted group (p = 0.02) but not significant
for the Non-Addicted group (p = 0.09). The researcher then went on to
conclude that since there is an effect of Treatment for the Addicted group but
not for the Non-Addicted group, the hypothesis of a greater effect for the
former than for the latter group is demonstrated. This is faulty logic, however,
since it is based on accepting the null hypothesis that the simple effect of
Treatment is zero for the Non-Addicted group just because it is not significant.

COMPONENTS OF INTERACTION (OPTIONAL)

Figure 3 shows the results of an imaginary diet on weight loss. A control
group and two diets were used for both overweight teens and overweight
adults.

Figure 3. Made-up Data for Diet
Study.
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The difference between Diet A and the Control diet was essentially the same
for teens and adults whereas the difference between Diet B and Diet A was
much larger for the Teens than it was for the Adults. Over one portion of the
graph the lines are parallel whereas over another portion they are not. It is
possible to test these portions or components of interactions using the
method of specific comparisons discussed previously. The test of the
difference between Teens and Adults on the difference between Diets A and
B could be tested with the coefficients shown in Table 4. Naturally, the same
consideration regarding multiple comparisons and orthogonal comparisons
apply to comparisons involving components of interaction that apply to other
comparisons among means.

Table 4. Coefficient for Component of the
Interaction.

Age
Group

Diet Coefficient

Teen
Teen
Adult
Adult

A
B
A
B

 1
-1
-1
 1


