
taken together, can provide strong support. Using a method for combining 
probabilities, it can be determined that combining the probability values of 0.11 
and 0.07 results in a probability value of 0.045. Therefore, these two non-
significant findings taken together result in a significant finding.

Although there is never a statistical basis for concluding that an effect is 
exactly zero, a statistical analysis can demonstrate that an effect is most likely 
small. This is done by computing a confidence interval. If all effect sizes in the 
interval are small, then it can be concluded that the effect is small. For example, 
suppose an experiment tested the effectiveness of a treatment for insomnia. 
Assume that the mean time to fall asleep was 2 minutes shorter for those receiving 
the treatment than for those in the control group and that this difference was not 
significant. If the 95% confidence interval ranged from -4 to 8 minutes, then the 
researcher would be justified in concluding that the benefit is eight minutes or less. 
However, the researcher would not be justified in concluding the null hypothesis is 
true, or even that it was supported.
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Steps in Hypothesis Testing
by David M. Lane

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Statistical Significance
• Chapter 11: Type I and II Errors

Learning Objectives
1. Be able to state the null hypothesis for both one-tailed and two-tailed tests
2. Differentiate between a significance level and a probability level
3. State the four steps involved in significance testing

1. The first step is to specify the null hypothesis. For a two-tailed test, the null 
hypothesis is typically that a parameter equals zero although there are 
exceptions. A typical null hypothesis is μ1 - μ2 = 0 which is equivalent to μ1 = 
μ2. For a one-tailed test, the null hypothesis is either that a parameter is greater 
than or equal to zero or that a parameter is less than or equal to zero. If the 
prediction is that μ1 is larger than μ2, then the null hypothesis (the reverse of the 
prediction) is μ2 - μ1 ≥ 0. This is equivalent to μ1 ≤ μ2.

2. The second step is to specify the α level which is also known as the significance 
level. Typical values are 0.05 and 0.01. 

3. The third step is to compute the probability value (also known as the p value). 
This is the probability of obtaining a sample statistic as different or more 
different from the parameter specified in the null hypothesis given that the null 
hypothesis is true. 

4. Finally, compare the probability value with the α level. If the probability value 
is lower then you reject the null hypothesis. Keep in mind that rejecting the null 
hypothesis is not an all-or-none decision. The lower the probability value, the 
more confidence you can have that the null hypothesis is false. However, if your 
probability value is higher than the conventional α level of 0.05, most scientists 
will consider your findings inconclusive. Failure to reject the null hypothesis 
does not constitute support for the null hypothesis. It just means you do not 
have sufficiently strong data to reject it.
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Significance Testing and Confidence Intervals
by David M. Lane

Prerequisites
• Chapter 10: Confidence Intervals Introduction
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Significance Testing 

Learning Objectives
1. Determine from a confidence interval whether a test is significant
2. Explain why a confidence interval makes clear that one should not accept the 

null hypothesis
There is a close relationship between confidence intervals and significance tests. 
Specifically, if a statistic is significantly different from 0 at the 0.05 level then the 
95% confidence interval will not contain 0. All values in the confidence interval are 
plausible values for the parameter whereas values outside the interval are rejected 
as plausible values for the parameter. In the Physicians' Reactions case study, the 
95% confidence interval for the difference between means extends from 2.00 to 
11.26. Therefore, any value lower than 2.00 or higher than 11.26 is rejected as a 
plausible value for the population difference between means. Since zero is lower 
than 2.00, it is rejected as a plausible value and a test of the null hypothesis that 
there is no difference between means is significant. It turns out that the p value is 
0.0057. There is a similar relationship between the 99% confidence interval and 
significance at the 0.01 level.

Whenever an effect is significant, all values in the confidence interval will be 
on the same side of zero (either all positive or all negative). Therefore, a significant 
finding allows the researcher to specify the direction of the effect. There are many 
situations in which it is very unlikely two conditions will have exactly the same 
population means. For example, it is practically impossible that aspirin and 
acetaminophen provide exactly the same degree of pain relief. Therefore, even 
before an experiment comparing their effectiveness is conducted, the researcher 
knows that the null hypothesis of exactly no difference is false. However, the 
researcher does not know which drug offers more relief. If a test of the difference 
is significant, then the direction of the difference is established because the values 
in the confidence interval are either all positive or all negative.
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If the 95% confidence interval contains zero (more precisely, the parameter 
value specified in the null hypothesis), then the effect will not be significant at the 
0.05 level. Looking at non-significant effects in terms of confidence intervals 
makes clear why the null hypothesis should not be accepted when it is not rejected: 
Every value in the confidence interval is a plausible value of the parameter. Since 
zero is in the interval, it cannot be rejected. However, there is an infinite number of  
other values in the interval (assuming continuous measurement), and none of them 
can be rejected either.
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Misconceptions
by David M. Lane

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Statistical Significance
• Chapter 11: Type I and II Errors

Learning Objectives
1. State why the probability value is not the probability the null hypothesis is false
2. Explain why a low probability value does not necessarily mean there is a large 

effect
3. Explain why a non-significant outcome does not mean the null hypothesis is 

probably true
Misconceptions about significance testing are common. This section lists three 
important ones.
1. Misconception: The probability value is the probability that the null hypothesis 
is false. 
Proper interpretation: The probability value is the probability of a result as extreme 
or more extreme given that the null hypothesis is true. It is the probability of the 
data given the null hypothesis. It is not the probability that the null hypothesis is 
false.

2. Misconception: A low probability value indicates a large effect.
Proper interpretation: A low probability value indicates that the sample outcome 
(or one more extreme) would be very unlikely if the null hypothesis were true. A 
low probability value can occur with small effect sizes, particularly if the sample 
size is large.

3. Misconception: A non-significant outcome means that the null hypothesis is 
probably true.
Proper interpretation: A non-significant outcome means that the data do not 
conclusively demonstrate that the null hypothesis is false.
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Statistical Literacy
by David M. Lane

Prerequisites
• Chapter 11: Interpreting Non-Significant Results

Research in March, 2012 reported here found evidence for the existence of the 
Higgs Boson particle. However, the evidence for the existence of the particle was 
not statistically significant.

What do you think?
Did the researchers conclude that their investigation had been a failure or did they 
conclude they have evidence of the particle, just not strong enough evidence to 
draw a confident conclusion?

One of  the investigators stated, "We see some tantalizing 
evidence but not significant enough to make a stronger 
statement." Therefore, they were encouraged by the result. In a 
subsequent study, the evidence was significant.
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Exercises

Prerequisites
• All material presented in the Logic of Hypothesis Testing chapter

1. An experiment is conducted to test the claim that James Bond can taste the 
difference between a Martini that is shaken and one that is stirred. What is the 
null hypothesis?

2. The following explanation is incorrect. What three words should be added to 
make it correct?
The probability value is the probability of obtaining a statistic as different (add 
three words here) from the parameter specified in the null hypothesis as the 
statistic obtained in the experiment. The probability value is computed assuming 
that the null hypothesis is true.

3. Why do experimenters test hypotheses they think are false?

4. State the null hypothesis for:
a. An experiment testing whether echinacea decreases the length of colds.
b. A correlational study on the relationship between brain size and intelligence.
c. An investigation of whether a self-proclaimed psychic can predict the outcome 
of a coin flip.
d. A study comparing a drug with a placebo on the amount of pain relief. (A one-
tailed test was used.)

5. Assume the null hypothesis is that μ = 50 and that the graph shown below is the 
sampling distribution of the mean (M). Would a sample value of M= 60 be 
significant in a two-tailed test at the .05 level? Roughly what value of M would 
be needed to be significant?
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6. A researcher develops a new theory that predicts that vegetarians will have more 
of a particular vitamin in their blood than non-vegetarians. An experiment is 
conducted and vegetarians do have more of the vitamin, but the difference is not 
significant. The probability value is 0.13. Should the experimenter’s confidence 
in the theory increase, decrease, or stay the same?

7. A researcher hypothesizes that the lowering in cholesterol associated with 
weight loss is really due to exercise. To test this, the researcher carefully controls 
for exercise while com- paring the cholesterol levels of a group of subjects who 
lose weight by dieting with a control group that does not diet. The difference 
between groups in cholesterol is not significant. Can the researcher claim that 
weight loss has no effect?

8. A significance test is performed and p = .20. Why can’t the experimenter claim 
that the probability that the null hypothesis is true is .20?

9. For a drug to be approved by the FDA, the drug must be shown to be safe and 
effective. If the drug is significantly more effective than a placebo, then the drug 
is deemed effective. What do you know about the effectiveness of a drug once it 
has been approved by the FDA (assuming that there has not been a Type I error)?

10. When is it valid to use a one-tailed test? What is the advantage of a one-tailed 
test? Give an example of a null hypothesis that would be tested by a one-tailed 
test.

11. Distinguish between probability value and significance level.

12. Suppose a study was conducted on the effectiveness of a class on “How to take 
tests.” The SAT scores of an experimental group and a control group were 
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compared. (There were 100 subjects in each group.) The mean score of the 
experimental group was 503 and the mean score of the control group was 499. 
The difference between means was found to be significant, p = .037. What do 
you conclude about the effectiveness of the class?

13. Is it more conservative to use an alpha level of .01 or an alpha level of .05? 
Would beta be higher for an alpha of .05 or for an alpha of .01?

14. Why is “Ho: “M1 = M2” not a proper null hypothesis?

15. An experimenter expects an effect to come out in a certain direction. Is this 
sufficient basis for using a one-tailed test? Why or why not?

16. How do the Type I and Type II error rates of one-tailed and two-tailed tests 
differ?

17. A two-tailed probability is .03. What is the one-tailed probability if the effect 
were in the specified direction? What would it be if the effect were in the other 
direction?

18. You choose an alpha level of .01 and then analyze your data.
a. What is the probability that you will make a Type I error given that the null 
hypothesis is true?
b. What is the probability that you will make a Type I error given that the null 
hypothesis is false?

19. Why doesn’t it make sense to test the hypothesis that the sample mean is 42?

20. True/false: It is easier to reject the null hypothesis if the researcher uses a 
smaller alpha (α) level.

21. True/false: You are more likely to make a Type I error when using a small 
sample than when using a large sample.

22. True/false: You accept the alternative hypothesis when you reject the null 
hypothesis. 

23. True/false: You do not accept the null hypothesis when you fail to reject it. 
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24. True/false: A researcher risks making a Type I error any time the null 
hypothesis is rejected.
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12. Testing Means
A. Single Mean
B. Difference between Two Means (Independent Groups)
C. All Pairwise Comparisons Among Means
D. Specific Comparisons
E. Difference between Two Means (Correlated Pairs)
F. Specific Comparisons (Correlated Observations)
G. Pairwise Comparisons (Correlated Observations)
H. Exercises
Many, if not most experiments are designed to compare means. The experiment 
may involve only one sample mean that is to be compared to a specific value. Or 
the experiment could be testing differences among many different experimental 
conditions, and the experimenter could be interested in comparing each mean with 
each of the other means. This chapter covers methods of comparing means in many 
different experimental situations.

The topics covered here in sections C, D, F, and G are typically covered in 
other texts in a chapter on Analysis of Variance. We prefer to cover them here since 
they bear no necessary relationship to analysis of variance. As discussed by 
Wilkinson (1999), it is not logical to consider the procedures in this chapter as tests 
to be performed subsequent to an analysis of variance. Nor is it logical to call them 
post-hoc tests as some computer programs do.
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Testing a Single Mean
by David M. Lane

Prerequisites
• Chapter 7: Normal Distributions 
• Chapter 7: Areas Under Normal Distributions
• Chapter 9: Sampling Distribution of the Mean
• Chapter 9: Introduction to Sampling Distributions
• Chapter 10: t Distribution
• Chapter 11: Logic of Hypothesis Testing

Learning Objectives
1. Compute the probability of a sample mean being at least as high as a specified 

value when σ is known
2. Compute a two-tailed probability
3. Compute the probability of a sample mean being at least as high as a specified 

value when σ is estimated
4. State the assumptions required for item 3 above
This section shows how to test the null hypothesis that the population mean is 
equal to some hypothesized value. For example, suppose an experimenter wanted 
to know if people are influenced by a subliminal message and performed the 
following experiment. Each of nine subjects is presented with a series of 100 pairs 
of pictures. As a pair of pictures is presented, a subliminal message is presented 
suggesting the picture that the subject should choose. The question is whether the 
(population) mean number of times the suggested picture is chosen is equal to 50. 
In other words, the null hypothesis is that the population mean (μ) is 50. The 
(hypothetical) data are shown in Table 1. The data in Table 1 have a sample mean 
(M) of 51. Thus the sample mean differs from the hypothesized population mean 
by 1.
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Table 1. Distribution of scores.

Frequency

45

48

49

49

51

52

53

55

57

The significance test consists of computing the probability of a sample mean 
differing from μ by one (the difference between the hypothesized population mean 
and the sample mean) or more. The first step is to determine the sampling 
distribution of the mean. As shown in Chapter 9, the mean and standard deviation 
of the sampling distribution of the mean are

µM = µ

and
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respectively. It is clear that μM = 50. In order to compute the standard deviation of 
the sampling distribution of the mean, we have to know the population standard 
deviation (σ). 

The current example was constructed to be one of the few instances in which 
the standard deviation is known. In practice, it is very unlikely that you would 
know σ and therefore you would use s, the sample estimate of σ. However, it is 
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instructive to see how the probability is computed if σ is known before proceeding 
to see how it is calculated when σ is estimated. 

For the current example, if the null hypothesis is true, then based on the 
binomial distribution, one can compute that variance of the number correct is

σ2 = Nπ(1-π)

= 100(0.5)(1-0.5)

= 25.

Therefore, σ = 5. For a σ of 5 and an N of 9, the standard deviation of the sampling 
distribution of the mean is 5/3 = 1.667. Recall that the standard deviation of a 
sampling distribution is called the standard error.

To recap, we wish to know the probability of obtaining a sample mean of 51 
or more when the sampling distribution of the mean has a mean of 50 and a 
standard deviation of 1.667. To compute this probability, we will make the 
assumption that the sampling distribution of the mean is normally distributed. We 
can then use the normal distribution calculator (external link) as shown in Figure 1.

Figure 1. Probability of a sample mean being 51 or greater.

Notice that the mean is set to 50, the standard deviation to 1.667, and the area 
above 51 is requested and shown to be 0.274.
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Therefore, the probability of obtaining a sample mean of 51 or larger is 
0.274. Since a mean of 51 or higher is not unlikely under the assumption that the 
subliminal message has no effect, the effect is not significant and the null 
hypothesis is not rejected.

The test conducted above was a one-tailed test because it computed the 
probability of a sample mean being one or more points higher than the 
hypothesized mean of 50 and the area computed was the area above 51. To test the 
two-tailed hypothesis, you would compute the probability of a sample mean 
differing by one or more in either direction from the hypothesized mean of 50. You 
would do so by computing the probability of a mean being less than or equal to 49 
or greater than or equal to 51.

The results of the normal distribution calculator are shown in Figure 2.

Figure 2. Probability of a sample mean being less than or equal to 49 or greater 
than or equal to 51.
As you can see, the probability is 0.548 which, as expected, is twice the probability 
of 0.274 shown in Figure 1.

Before normal calculators such as the one illustrated above were widely 
available, probability calculations were made based on the standard normal 
distribution. This was done by computing Z based on the formula
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where Z is the value on the standard normal distribution, M is the sample mean, μ 
is the hypothesized value of the mean, and σM is the standard error of the mean. 
For this example, Z = (51-50)/1.667 = 0.60. The normal calculator with a mean of 
0 and a standard deviation of 1 is shown in Figure 3.

Figure 3. Calculation using the standardized normal distribution.

Notice that the probability (the shaded area) is the same as previously calculated 
(for the one-tailed test).

As noted, in real-world data analyses it is very rare that you would know σ 
and wish to estimate μ. Typically σ is not known and is estimated in a sample by s, 
and σM is estimated by sM. For our next example, we will consider the data in the 
“ADHD Treatment” case study. These data consist of the scores of 24 children with 
ADHD on a delay of gratification (DOG) task. Each child was tested under four 
dosage levels. Table 2 shows the data for the placebo (0 mg) and highest dosage 
level (0.6 mg) of methylphenidate. Of particular interest here is the column labeled 
“Diff” that shows the difference in performance between the 0.6 mg (D60) and the 
0 mg (D0) conditions. These difference scores are positive for children who 
performed better in the 0.6 mg condition than in the control condition and negative 
for those who scored better in the control condition. If methylphenidate has a 
positive effect, then the mean difference score in the population will be positive. 
The null hypothesis is that the mean difference score in the population is 0.
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Table 2. DOG scores as a function of dosage.

D0 D60 Diff

57 62 5

27 49 22

32 30 -2

31 34 3

34 38 4

38 36 -2

71 77 6

33 51 18

34 45 11

53 42 -11

36 43 7

42 57 15

26 36 10

52 58 6

36 35 -1

55 60 5

36 33 -3

42 49 7

36 33 -3

54 59 5

34 35 1

29 37 8

33 45 12

33 29 -4

To test this null hypothesis, we compute t using a special case of the following 
formula:
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The special case of this formula applicable to testing a single mean is
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where t is the value we compute for the significance test, M is the sample mean, μ 
is the hypothesized value of the population mean, and sM is the estimated standard 
error of the mean. Notice the similarity of this formula to the formula for Z.

In the previous example, we assumed that the scores were normally 
distributed. In this case, it is the population of difference scores that we assume to 
be normally distributed.

The mean (M) of the N = 24 difference scores is 4.958, the hypothesized 
value of μ is 0, and the standard deviation (s) is 7.538. The estimate of the standard 
error of the mean is computed as:
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Therefore, t = 4.96/1.54 = 3.22. The probability value for t depends on the degrees 
of freedom. The number of degrees of freedom is equal to N - 1 = 23. A t 
distribution calculator shows that a t less than -3.22 or greater than 3.22 is only 
0.0038. Therefore, if the drug had no effect, the probability of finding a difference 
between means as large or larger (in either direction) than the difference found is 
very low. Therefore the null hypothesis that the population mean difference score is 
zero can be rejected. The conclusion is that the population mean for the drug 
condition is higher than the population mean for the placebo condition.

Review of Assumptions
1. Each value is sampled independently from each other value.
2. The values are sampled from a normal distribution.
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Differences between Two Means (Independent Groups)
by David M. Lane

Prerequisites
• Chapter 9: Sampling Distribution of Difference between Means
• Chapter 10: Confidence Intervals
• Chapter 10: Confidence Interval on the Difference between Means
• Chapter 11: Logic of Hypothesis Testing
• Chapter 12: Testing a Single Mean

Learning Objectives
1. State the assumptions for testing the difference between two means
2. Estimate the population variance assuming homogeneity of variance
3. Compute the standard error of the difference between means
4. Compute t and p for the difference between means
5. Format data for computer analysis
It is much more common for a researcher to be interested in the difference between 
means than in the specific values of the means themselves. This section covers how 
to test for differences between means from two separate groups of subjects. A later 
section describes how to test for differences between the means of two conditions 
in designs where only one group of subjects is used and each subject is tested in 
each condition.

We take as an example the data from the “Animal Research” case study. In 
this experiment, students rated (on a 7-point scale) whether they thought animal 
research is wrong. The sample sizes, means, and variances are shown separately 
for males and females in Table 1.

Table 1. Means and Variances in Animal Research study.

Group n Mean Variance

Females 17 5.353 2.743

Males 17 3.882 2.985

As you can see, the females rated animal research as more wrong than did the 
males. This sample difference between the female mean of 5.35 and the male mean 
of 3.88 is 1.47. However, the gender difference in this particular sample is not very 
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important. What is important is whether there is a difference in the population 
means.

In order to test whether there is a difference between population means, we 
are going to make three assumptions:
1. The two populations have the same variance. This assumption is called the 

assumption of homogeneity of variance.
2. The populations are normally distributed.
3. Each value is sampled independently from each other value. This assumption 

requires that each subject provide only one value. If a subject provides two 
scores, then the scores are not independent. The analysis of data with two scores 
per subject is shown in the section on the correlated t test later in this chapter.

Small-to-moderate violations of assumptions 1 and 2 do not make much difference. 
It is important not to violate assumption 3.

We saw the following general formula for significance testing in the section 
on testing a single mean:

In this case, our statistic is the difference between sample means and our 
hypothesized value is 0. The hypothesized value is the null hypothesis that the 
difference between population means is 0.

We continue to use the data from the “Animal Research” case study and will 
compute a significance test on the difference between the mean score of the 
females and the mean score of the males. For this calculation, we will make the 
three assumptions specified above.

The first step is to compute the statistic, which is simply the difference 
between means.

M1 - M2 = 5.3529 - 3.8824 = 1.4705.

Since the hypothesized value is 0, we do not need to subtract it from the statistic.
The next step is to compute the estimate of the standard error of the statistic. 

In this case, the statistic is the difference between means so the estimated standard 
error of the statistic is (sM1-M2). Recall from the relevant section in the chapter on 
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sampling distributions that the formula for the standard error of the difference 
between means is:
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In order to estimate this quantity, we estimate σ2 and use that estimate in place of 
σ2. Since we are assuming the two population variances are the same, we estimate 
this variance by averaging our two sample variances. Thus, our estimate of 
variance is computed using the following formula:
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where MSE is our estimate of σ2. In this example,

MSE = (2.743 + 2.985)/2 = 2.864.

Since n (the number of scores in each group) is 17,
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The next step is to compute t by plugging these values into the formula:

t = 1.4705/.5805 = 2.533.

Finally, we compute the probability of getting a t as large or larger than 2.533 or as 
small or smaller than -2.533. To do this, we need to know the degrees of freedom. 
The degrees of freedom is the number of independent estimates of variance on 
which MSE is based. This is equal to (n1 - 1) + (n2 - 1), where n1 is the sample size 
of the first group and n2 is the sample size of the second group. For this example, 
n1  =  n2 = 17. When n1  =  n2, it is conventional to use “n” to refer to the sample 
size of each group. Therefore, the degrees for freedom is 16 + 16 = 32.
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Once we have the degrees of freedom, we can use a t distribution calculator 
to find that the probability value for a two-tailed test is 0.0164. The two-tailed test 
is used when the null hypothesis can be rejected regardless of the direction of the 
effect. This is the probability of a t < -2.533 or a t > 2.533. A one-tailed test would 
result in a probability of 0.0082, which is half the two-tailed probability.

Formatting Data for Computer Analysis
Most computer programs that compute t tests require your data to be in a specific 
form. Consider the data in Table 2.

Table 2. Example Data.

Group 1 Group 2

3 2

4 6

5 8

Here there are two groups, each with three observations. To format these data for a 
computer program, you normally have to use two variables: the first specifies the 
group the subject is in and the second is the score itself. The reformatted version of 
the data in Table 2 is shown in Table 3.

Table 3. Reformatted Data

G Y

1 3

1 4

1 5

2 2

2 6

2 8

Computations for Unequal Sample Sizes (optional)
The calculations are somewhat more complicated when the sample sizes are not 
equal. One consideration is that MSE, the estimate of variance, counts the group 
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with the larger sample size more than the group with the smaller sample size. 
Computationally, this is done by computing the sum of squares error (SSE) as 
follows:
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where M1 is the mean for group 1 and M2 is the mean for group 2. Consider the 
following small example:

Table 4. Unequal n

Group 1 Group 2

3 2

4 4

5  

M1 = 4 and M2 = 3.

SSE = (3-4)2 + (4-4)2 + (5-4)2 + (2-3)2 + (4-3)2 
 = 4

Then, MSE is computed by:
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The formula
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is replaced by
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where nh is the harmonic mean of the sample sizes and is computed as follows:
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Therefore,

t = (4-3)/1.054 = 0.949

and the two-tailed p = 0.413.
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All Pairwise Comparisons Among Means
by David M. Lane

Prerequisites
• Chapter 12: Difference Between Two Means (Independent Groups)

Learning Objectives
1. Define pairwise comparison
2. Describe the problem with doing t tests among all pairs of means
3. Calculate the Tukey HSD test
4. Explain why Tukey test should not necessarily be considered a follow-up test
Many experiments are designed to compare more than two conditions. We will take 
as an example the case study “Smiles and Leniency.” In this study, the effect of 
different types of smiles on the leniency showed to a person was investigated. An 
obvious way to proceed would be to do a t test of the difference between each 
group mean and each of the other group means. This procedure would lead to the 
six comparisons shown in Table 1.

The problem with this approach is that if you did this analysis, you would 
have six chances to make a Type I error. Therefore, if you were using the 0.05 
significance level, the probability that you would make a Type I error on at least 
one of these comparisons is greater than 0.05. The more means that are compared, 
the more the Type I error rate is inflated. Figure 1 shows the number of possible 
comparisons between pairs of means (pairwise comparisons) as a function of the 
number of means. If there are only two means, then only one comparison can be 
made. If there are 12 means, then there are 66 possible comparisons.
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Table 1. Six Comparisons among Means.
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Figure 1. Number of pairwise comparisons as a function of the number of 
means.
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Figure 2 shows the probability of a Type I error as a function of the number of 
means. As you can see, if you have an experiment with 12 means, the probability is 
about 0.70 that at least one of the 66 comparisons among means would be 
significant even if all 12 population means were the same.
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Figure 2. Probability of a Type I Error as a Function of the Number of 
Means.

The Type I error rate can be controlled using a test called the Tukey Honestly 
Significant Difference test or Tukey HSD for short. The Tukey HSD is based on a 
variation of the t distribution that takes into account the number of means being 
compared. This distribution is called the studentized range distribution.
Let's return to the leniency study to see how to compute the Tukey HSD test. You 
will see that the computations are very similar to those of an independent-groups t 
test. The steps are outlined below:
1. Compute the means and variances of each group. They are shown below.

Condition Mean Variance

FALSE 5.37 3.34

Felt 4.91 2.83
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Miserable 4.91 2.11

Neutral 4.12 2.32

2. Compute MSE, which is simply the mean of the variances. It is equal to 2.65.
3. Compute
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for each pair of means, where Mi is one mean, Mj is the other mean, and n is the 
number of scores in each group. For these data, there are 34 observations per 
group. The value in the denominator is 0.279.
4. Compute p for each comparison using the Studentized Range Calculator 
(external link; requires Java). The degrees of freedom is equal to the total number 
of observations minus the number of means. For this experiment, df = 136 - 4 = 
132.

The tests for these data are shown in Table 2. The only significant 
comparison is between the false smile and the neutral smile.

Table 2. Six Pairwise Comparisons.

Comparison Mi-Mj Q p

False - Felt 0.46 1.65 0.649

False - Miserable 0.46 1.65 0.649

False - Neutral 1.25 4.48 0.010

Felt - Miserable 0.00 0.00 1.000

Felt - Neutral 0.79 2.83 0.193

Miserable - Neutral 0.79 2.83 0.193

It is not unusual to obtain results that on the surface appear paradoxical. For 
example, these results appear to indicate that (a) the false smile is the same as the 
miserable smile, (b) the miserable smile is the same as the neutral control, and (c) 
the false smile is different from the neutral control. This apparent contradiction is 
avoided if you are careful not to accept the null hypothesis when you fail to reject 
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it. The finding that the false smile is not significantly different from the miserable 
smile does not mean that they are really the same. Rather it means that there is not 
convincing evidence that they are different. Similarly, the non-significant 
difference between the miserable smile and the control does not mean that they are 
the same. The proper conclusion is that the false smile is higher than the control 
and that the miserable smile is either (a) equal to the false smile, (b) equal to the 
control, or (c) somewhere in-between.

Assumptions
The assumptions of the Tukey test are essentially the same as for an independent-
groups t test: normality, homogeneity of variance, and independent observations. 
The test is quite robust to violations of normality. Violating homogeneity of 
variance can be more problematical than in the two-sample case since the MSE is 
based on data from all groups. The assumption of independence of observations is 
important and should not be violated.

Computer Analysis
For most computer programs, you should format your data the same way you do 
for independent-groups t test. The only difference is that if you have, say, four 
groups, you would code each group as 1, 2, 3, or 4 rather than just 1 or 2.

Although full-featured statistics programs such as SAS, SPSS, R, and others 
can compute Tukey's test, smaller programs (including Analysis Lab) may not. 
However, these programs are generally able to compute a procedure known as 
Analysis of Variance (ANOVA). This procedure will be described in detail in a 
later chapter. Its relevance here is that an ANOVA computes the MSE that is used 
in the calculation of Tukey's test. For example, the following shows the ANOVA 
summary table for the “Smiles and Leniency” data.

The column labeled MS stands for “Mean Square” and therefore the value 2.6489 
in the “Error” row and the MS column is the “Mean Squared Error” or MSE. 
Recall that this is the same value computed here (2.65) when rounded off.
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Tukey's Test Need Not Be A Follow-Up to ANOVA
Some textbooks introduce the Tukey test only as a follow-up to an analysis of 
variance. There is no logical or statistical reason why you should not use the Tukey 
test even if you do not compute an ANOVA (or even know what one is). If you or 
your instructor do not wish to take our word for this, see the excellent article on 
this and other issues in statistical analysis by Wilkinson and the Task Force on 
Statistical Inference (1999).

Computations for Unequal Sample Sizes (optional)
The calculation of MSE for unequal sample sizes is similar to its calculation in an 
independent-groups t test. Here are the steps:
1. Compute a Sum of Squares Error (SSE) using the following formula
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where Mi is the mean of the ith group and k is the 

number of groups. 

2. Compute the degrees of freedom error (dfe) by subtracting the number of groups 
(k) from the total number of observations (N). Therefore,

dfe N - k.

Compute MSE by dividing SSE by dfe:

MSE = SSE/dfe.

For each comparison of means, use the harmonic mean of the n's for the two means 
(nh).

All other aspects of the calculations are the same as when you have equal 
sample sizes.
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Specific Comparisons (Independent Groups)
by David M. Lane

Prerequisites
• Chapter 12: Difference Between Two Means (Independent Groups)

Learning Objectives
1. Define linear combination
2. Specify a linear combination in terms of coefficients
3. Do a significance test for a specific comparison
There are many situations in which the comparisons among means are more 
complicated than simply comparing one mean with another. This section shows 
how to test these more complex comparisons. The methods in this section assume 
that the comparison among means was decided on before looking at the data. 
Therefore these comparisons are called planned comparisons. A different 
procedure is necessary for unplanned comparisons.

Let's begin with the made-up data from a hypothetical experiment shown in 
Table 1. Twelve subjects were selected from a population of high-self-esteem 
subjects (esteem = 1) and an additional 12 subjects were selected from a population 
of low-self-esteem subjects (esteem = 2). Subjects then performed on a task and 
(independent of how well they really did) half in each esteem category were told 
they succeeded (outcome = 1) and the other half were told they failed (outcome = 
2). Therefore, there were six subjects in each of the four esteem/outcome 
combinations and 24 subjects all together.

After the task, subjects were asked to rate (on a 10-point scale) how much of 
their outcome (success or failure) they attributed to themselves as opposed to being 
due to the nature of the task.
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Table 1. Data from Hypothetical Experiment.

outcome esteem attrib

1 1 7

1 1 8

1 1 7

1 1 8

1 1 9

1 1 5

1 2 6

1 2 5

1 2 7

1 2 4

1 2 5

1 2 6

2 1 4

2 1 6

2 1 5

2 1 4

2 1 7

2 1 3

2 2 9

2 2 8

2 2 9

2 2 8

2 2 7

2 2 6

The means of the four conditions are shown in Table 2.
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Table 2. Mean ratings of self-attributions of success or failure.

Outcome Esteem Mean

Success High Self-Esteem 7.333Success

Low Self-Esteem 5.500

Failure High Self-Esteem 4.833Failure

Low Self-Esteem 7.833

There are several questions we can ask about the data. We begin by asking 
whether, on average, subjects who were told they succeeded differed significantly 
from subjects who were told they failed. The means for subjects in the success 
condition are 7.333 for the high-self-esteem subjects and 5.500 for the low-self-
esteem subjects. Therefore, the mean for all subjects in the success condition is 
(7.3333 + 5.5000)/2 = 6.4167. Similarly, the mean for all subjects in the failure 
condition is (4.8333 + 7.8333)/2 = 6.3333. The question is: How do we do a 
significance test for this difference of 6.4167-6.3333 = 0.083?

The first step is to express this difference in terms of a linear combination 
using a set of coefficients and the means. This may sound complex, but it is really 
pretty easy. We can compute the mean of the success conditions by multiplying 
each success mean by 0.5 and then adding the result. In other words, we compute

(.5)(7.333) + (.5)(5.500)
= 3.67 + 2.75
= 6.42

Similarly we can compute the mean of the failure conditions by multiplying each 
failure mean by 0.5 and then adding the result:

(.5)(4.833) + (.5)(7.833)
= 2.417 + 3.917
= 6.33

The difference between the two means can be expressed as

.5 x 7.333 + .5 x 5.500 -(.5 x 4.833 + .5 x 7.833)=

.5 x 7.333 + .5 x 5.500 - .5 x 4.833 - .5 x 7.8333
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We therefore can compute the difference between the “success” mean and the 
“failure” mean by multiplying each “success” mean by 0.5, each “failure” mean by 
-0.5 and adding the results. In Table 3, the coefficient column is the multiplier and 
the product column in the result of the multiplication. If we add up the four values 
in the product column we get:

L = 3.667 + 2.750 - 2.417 - 3.917 = 0.083

This is the same value we got when we computed the difference between means 
previously (within rounding error). We call the value “L” for “linear combination.”

Table 3. Coefficients for comparing low and high self-esteem.

Outcome Esteem Mean Coeff Product

Success High Self-Esteem 7.333 0.5 3.667Success

Low Self-Esteem 5.500 0.5 2.750

Failure High Self-Esteem 4.833 -0.5 -2.417Failure

Low Self-Esteem 7.833 -0.5 -3.917

Now, the question is whether our value of L is significantly different from 0. The 
general formula for L is
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where ci is the ith coefficient and Mi is the ith mean. As shown above, L = 0.083. 
The formula for testing L for significance is shown below:
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MSE is the mean of the variances. The four variances are shown in Table 4. Their 
mean is 1.625. Therefore MSE = 1.625.

Table 4. Variances of attributions of success or failure to oneself.

Outcome Esteem Variance

Success High Self-Esteem 1.867Success

Low Self-Esteem 1.100

Failure High Self-Esteem 2.167Failure

Low Self-Esteem 1.367

The value of n is the number of subjects in each group. Here n = 6.
Putting it all together,

We need to know the degrees for freedom in order to compute the probability 
value. The degrees of freedom is

df = N - k

where N is the total number of subjects (24) and k is the number of groups (4). 
Therefore, df = 20. Using the Online Calculator, we find that the two-tailed 
probability value is 0.874. Therefore, the difference between the “success” 
condition and the “failure” condition is not significant.

A more interesting question about the results is whether the effect of 
outcome (success or failure) differs depending on the self-esteem of the subject. 
For example, success may make high-self-esteem subjects more likely to attribute 
the outcome to themselves, whereas success may make low-self-esteem subjects 
less likely to attribute the outcome to themselves.

To test this, we have to test a difference between differences. Specifically, is 
the difference between success and failure outcomes for the high-self-esteem 
subjects different from the difference between success and failure outcomes for the 
low-self-esteem subjects? The means in Table 5 suggest that this is the case. For 
the high-self-esteem subjects, the difference between the success and failure 
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attribution scores is 7.333 - 4.833 = 2.500. For low-self-esteem subjects, the 
difference is 5.500 - 7.833 = -2.333. The difference between differences is 2.500 - 
(-2.333) = 4.833.

The coefficients to test this difference between differences are shown in 
Table 5.

Table 5. Coefficients for testing differences between differences.

Self-Esteem Outcome Mean Coefficient Product

High Success 7.333 1 7.333High

Failure 4.833 -1 -4.833

Low Success 5.500 -1 -5.500Low

Failure 7.833 1 7.833

If it is hard to see where these coefficients came from, consider that our difference 
between differences was computed this way:

(7.33 - 4.83) - (5.5 - 7.83)

= 7.3 - 4.83 - 5.5 + 7.83

= (1)7.3 + (-1)4.83 + (-1)5.5 + (1)7.83

The values in parentheses are the coefficients.
To continue the calculations,
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The two-tailed p value is 0.0002. Therefore, the difference between differences is 
highly significant.
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In a later chapter on Analysis of Variance, you will see that comparisons 
such as this are testing what is called an interaction. In general, there is an 
interaction when the effect of one variable differs as a function of the level of 
another variable. . In this example, the effect of the outcome variable is different 
depending on the subject's self-esteem. For the high-self-esteem subjects, success 
led to more self-attribution than did failure; for the low-self-esteem subjects, 
success led to less self-attribution than did failure.

Multiple Comparisons
The more comparisons you make, the greater your chance of a Type I error. It is 
useful to distinguish between two error rates: (1) the per-comparison error rate 
and (2) the familywise error rate. The per-comparison error rate is the probability 
of a Type I error for a particular comparison. The familywise error rate is the 
probability of making one or more Type I errors in a family or set of comparisons. 
In the attribution experiment discussed previously, we computed two comparisons. 
If we use the 0.05 level for each comparison, then the per-comparison rate is 
simply 0.05. The familywise rate can be complex. Fortunately, there is a simple 
approximation that is fairly accurate when the number of comparisons is small. 
Defining α as the per-comparison error rate and c as the number of comparisons, 
the following inequality always holds true for the familywise error rate (FW):

FW ≤ cα

This inequality is called the Bonferroni inequality. In practice, FW can be 
approximated by cα. This is a conservative approximation since FW can never be 
greater than cα and is generally less than cα.

The Bonferroni inequality can be used to control the familywise error rate as 
follows: If you want the familywise error rate to be α, you use α/c as the per-
comparison error rate. This correction, called the Bonferroni correction, will 
generally result in a familywise error rate less than α. Alternatively, you could 
multiply the by c and use the original α level.

Should the familywise error rate be controlled? Unfortunately, there is no 
clear-cut answer to this question. The disadvantage of controlling the familywise 
error rate is that it makes it more difficult to obtain a significant result for any 
given comparison: The more comparisons you do, the lower the per-comparison 
rate must be and therefore the harder it is to reach significance. That is, the power 
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is lower when you control the familywise error rate. The advantage is that you 
have a lower chance of making a Type I error.

One consideration is the definition of a family of comparisons. Let's say you 
conducted a study in which you were interested in whether there was a difference 
between male and female babies in the age at which they started crawling. After 
you finished analyzing the data, a colleague of yours had a totally different 
research question: Do babies who are born in the winter differ from those born in 
the summer in the age they start crawling? Should the familywise rate be 
controlled or should it be allowed to be greater than 0.05? Our view is that there is 
no reason you should be penalized (by lower power) just because your colleague 
used the same data to address a different research question. Therefore, the 
familywise error rate need not be controlled. Consider the two comparisons done 
on the attribution example at the beginning of this section: These comparisons are 
testing completely different hypotheses. Therefore, controlling the familywise rate 
is not necessary.

Now consider a study designed to investigate the relationship between 
various variables and the ability of subjects to predict the outcome of a coin flip. 
One comparison is between males and females; a second comparison is between 
those over 40 and those under 40; a third is between vegetarians and non-
vegetarians; and a fourth is between firstborns and others. The question of whether 
these four comparisons are testing different hypotheses depends on your point of 
view. On the one hand, there is nothing about whether age makes a difference that 
is related to whether diet makes a difference. In that sense, the comparisons are 
addressing different hypotheses. On the other hand, the whole series of 
comparisons could be seen as addressing the general question of whether anything 
affects the ability to predict the outcome of a coin flip. If nothing does, then 
allowing the familywise rate to be high means that there is a high probability of 
reaching the wrong conclusion.

 Orthogonal Comparisons
In the preceding sections, we talked about comparisons being independent. 
Independent comparisons are often called orthogonal comparisons. There is a 
simple test to determine whether two comparisons are orthogonal: If the sum of the 
products of the coefficients is 0, then the comparisons are orthogonal. Consider 
again the experiment on the attribution of success or failure. Table 6 shows the 
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coefficients previously presented in Table 3 and in Table 5. The column “C1” 
contains the coefficients from the comparison shown in Table 3; the column “C2” 
contains the coefficients from the comparison shown in Table 5. The column 
labeled “Product” is the product of these two columns. Note that the sum of the 
numbers in this column is 0. Therefore, the two comparisons are orthogonal.

Table 6. Coefficients for two orthogonal comparisons.

Outcome Esteem C1 C2 Product

Success High Self-Esteem 0.5 1 0.5Success

Low Self-Esteem 0.5 -1 -0.5

Failure High Self-Esteem -0.5 -1 0.5Failure

Low Self-Esteem -0.5 1 -0.5

Table 7 shows two comparisons that are not orthogonal. The first compares the 
high-self-esteem subjects to the low-self-esteem subjects; the second considers 
only those in the success group and compares high-self-esteem subjects to low-
self-esteem subjects. The failure group is ignored by using 0's as coefficients. 
Clearly the comparison of high-self-esteem subjects to low-self-esteem subjects for 
the whole sample is not independent of the comparison for the success group only. 
You can see that the sum of the products of the coefficients is 0.5 and not 0.
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Table 7. Coefficients for two non-orthogonal comparisons.

Outcome Esteem C1 C2 Product

Success High Self-Esteem 0.5 0.5 0.25Success

Low Self-Esteem -0.5 -0.5 0.25

Failure High Self-Esteem 0.5 0.0 0.0Failure

Low Self-Esteem -0.5 0.0 0.0
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Difference Between Two Means (Correlated Pairs)
by David M. Lane

Prerequisites
• Chapter 4: Values of the Pearson Correlation 
• Chapter 10: t Distribution
• Chapter 11: Hypothesis Testing
• Chapter 12: Testing a Single Mean
• Chapter 12: Difference Between Two Means (Independent Groups)

Learning Objectives
1. Determine whether you have correlated pairs or independent groups
2. Compute a t test for correlated pairs
Let's consider how to analyze the data from the “ADHD Treatment” case study. 
These data consist of the scores of 24 children with ADHD on a delay of 
gratification (DOG) task. Each child was tested under four dosage levels. In this 
section, we will be concerned only with testing the difference between the mean of 
the placebo (D0) condition and the mean of the highest dosage condition (D60).  
The first question is why the difference between means should not be tested using 
the procedure described in the section Difference Between Two Means 
(Independent Groups). The answer lies in the fact that in this experiment we do not 
have independent groups. The scores in the D0 condition are from the same 
subjects as the scores in the D60 condition. There is only one group of subjects, 
each subject being tested in both the D0 and D60 conditions.

Figure 1 shows a scatter plot of the 60-mg scores (D60) as a function of the 
0-mg scores (D0). It is clear that children who get more correct in the D0 condition 
tend to get more correct in the D60 condition. The correlation between the two 
conditions is high: r = 0.80. Clearly these two variables are not independent.
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Figure 1. Number of correct responses made in the 60-mg condition as a function 
of the number of correct responses in the 0-mg condition.

Computations
You may recall that the method to test the difference between these means was 
presented in the section on “Testing a Single Mean.” The computational procedure 
is to compute the difference between the D60 and the D0 conditions for each child 
and test whether the mean difference is significantly different from 0. The 
difference scores are shown in Table 1. As shown in the section on testing a single 
mean, the mean difference score is 4.96 which is significantly different from 0: t = 
3.22, df = 23, p = 0.0038. This t test has various names including “correlated t 
test” and “related-pairs t test.”

In general, the correlated t test is computed by first computing the 
differences between the two scores for each subject. Then, a test of a single mean is 
computed on the mean of these difference scores.

Table 1. DOG scores as a function of dosage.

D0 D60 D60-D0

57 62 5

27 49 22
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32 30 -2

31 34 3

34 38 4

38 36 -2

71 77 6

33 51 18

34 45 11

53 42 -11

36 43 7

42 57 15

26 36 10

52 58 6

36 35 -1

55 60 5

36 33 -3

42 49 7

36 33 -3

54 59 5

34 35 1

29 37 8

33 45 12

33 29 -4

If you had mistakenly used the method for an independent-groups t test with these 
data, you would have found that t = 1.42, df = 46, and p = 0.15. That is, the 
difference between means would not have been found to be statistically significant. 
This is a typical result: correlated t tests almost always have greater power than 
independent-groups t tests. This is because in correlated t tests, each difference 
score is a comparison of performance in one condition with the performance of that 
same subject in another condition. This makes each subject “their own control” and 
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keeps differences between subjects from entering into the analysis. The result is 
that the standard error of the difference between means is smaller in the correlated t 
test and, since this term is in the denominator of the formula for t, results in a 
larger t.

Details about the Standard Error of the Difference between Means 
(Optional)
To see why the standard error of the difference between means is smaller in a 
correlated t test, consider the variance of difference scores. As shown in the section 
on the Variance Sum Law, the variance of the sum or difference of the two 
variables X and Y is:
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Therefore, the variance of difference scores is the variance in the first condition (X) 
plus the variance in the second condition (Y) minus twice the product of (1) the 
correlation, (2) the standard deviation of X, and (3) the standard deviation of Y. For 
the current example, r = 0.80 and the variances and standard deviations are shown 
in Table 2.

Table 2. Variances and Standard Deviations

 D0 D60 D60 - D0

Variance 128.02 151.78 56.82

Sd 11.31 12.32 7.54

The variance of the difference scores of 56.82 can be computed as:

128.02 + 151.78 - (2)(0.80)(11.31)(12.32)

which is equal to 56.82 except for rounding error. Notice that the higher the 
correlation, the lower the standard error of the mean.
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Specific Comparisons (Correlated Observations)
by David M. Lane

Prerequisites
• Chapter 10: t Distribution 
• Chapter 12: Hypothesis Testing, Testing a Single Mean
• Chapter 12: Specific Comparisons
• Chapter 12: Difference Between Two Means (Correlated Pairs)

Learning Objectives
1. Determine whether to use the formula for correlated comparisons or 

independent-groups comparisons
2. Compute t for a comparison for repeated-measures data
In the "Weapons and Aggression" case study, subjects were asked to read words 
presented on a computer screen as quickly as they could. Some of the words were 
aggressive words such as injure or shatter. Others were control words such as 
relocate or consider. These two types of words were preceded by words that were 
either the names of weapons, such as shotgun or grenade, or non-weapon words, 
such as rabbit or fish. For each subject, the mean reading time across words was 
computed for these four conditions. The four conditions are labeled as shown in 
Table 1. Table 2 shows the data from five subjects.

Table 1. Description of Conditions.

Variable Description

aw The time in milliseconds (msec) to name an aggressive word 
following a weapon word prime.

an The time in milliseconds (msec) to name an aggressive word 
following a non-weapon word prime.

cw The time in milliseconds (msec) to name a control word following a 
weapon word prime.

cn The time in milliseconds (msec) to name a control word following a 
non-weapon word prime.
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Table 2. Data from Five Subjects

Subject aw an cw cn

1 447 440 432 452

2 427 437 469 451

3 417 418 445 434

4 348 371 353 344

5 471 443 462 463

One question was whether reading times would be shorter when the preceding 
word was a weapon word (aw and cw conditions) than when it was a non-weapon 
word (an and cn conditions). In other words, is

L1 = (an + cn) - (aw + cw)

greater than 0? This is tested for significance by computing L1 for each subject and 
then testing whether the mean value of L1 is significantly different from 0. Table 3 
shows L1 for the first five subjects. L1 for Subject 1 was computed by

L1 = (440 + 452) - (447 + 432) = 892 - 879 = 13

Table 3. L1 for Five Subjects

Subject aw an cw cn L1

1 447 440 432 452 13

2 427 437 469 451 -8

3 417 418 445 434 -10

4 348 371 353 344 14

5 471 443 462 463 -27

Once L1 is computed for each subject, the significance test described in the section 
“Testing a Single Mean” can be used. First we compute the mean and the standard 
error of the mean for L1. There were 32 subjects in the experiment. Computing L1 
for the 32 subjects, we find that the mean and standard error of the mean are 5.875 
and 4.2646, respectively. We then compute
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where M is the sample mean, μ is the hypothesized value of the population mean 
(0 in this case), and sM is the estimated standard error of the mean. The calculations 
show that t = 1.378. Since there were 32 subjects, the degrees of freedom is 32 - 1 
= 31. The t distribution calculator shows that the two-tailed probability is 0.178.

A more interesting question is whether the priming effect (the difference 
between words preceded by a non-weapon word and words preceded by a weapon 
word) is different for aggressive words than it is for non-aggressive words. That is, 
do weapon words prime aggressive words more than they prime non-aggressive 
words? The priming of aggressive words is (an - aw). The priming of non-
aggressive words is (cn - cw). The comparison is the difference:
L2 = (an - aw) - (cn - cw).

Table 4 shows L2 for five of the 32 subjects.

Table 4. L2 for Five Subjects

Subject aw an cw cn L2

1 447 440 432 452 -27

2 427 437 469 451 28

3 417 418 445 434 12

4 348 371 353 344 32

5 471 443 462 463 -29

The mean and standard error of the mean for all 32 subjects are 8.4375 and 3.9128, 
respectively. Therefore, t = 2.156 and p = 0.039.

Multiple Comparisons
Issues associated with doing multiple comparisons are the same for related 
observations as they are for multiple comparisons among independent groups.
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Orthogonal Comparisons
The most straightforward way to assess the degree of dependence between two 
comparisons is to correlate them directly. For the weapons and aggression data, the 
comparisons L1 and L2 are correlated 0.24. Of course, this is a sample correlation 
and only estimates what the correlation would be if L1 and L2 were correlated in 
the  population. Although mathematically possible, orthogonal comparisons with 
correlated observations are very rare.
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Pairwise Comparisons (Correlated Observations)
by David M. Lane

Prerequisites
• Chapter 12: Difference between Two Means (Independent Groups)
• Chapter 12: All Pairwise Comparisons Among Means
• Chapter 12: Difference Between Two Means
• Chapter 12: Difference Between Two Means ( Correlated Pairs)
• Chapter 12: Specific Comparisons (Independent Groups)
• Chapter 12: Specific Comparisons (Correlated Observations)

Learning Objectives
1. Compute the Bonferroni correction
2. Calculate pairwise comparisons using the Bonferroni correction
In the section on all pairwise comparisons among independent groups, the Tukey 
HSD test was the recommended procedure. However, when you have one group 
with several scores from the same subjects, the Tukey test makes an assumption 
that is unlikely to hold: The variance of difference scores is the same for all 
pairwise differences between means.

The standard practice for pairwise comparisons with correlated observations 
is to compare each pair of means using the method outlined in the section 
“Difference Between Two Means (Correlated Pairs)” with the addition of the 
Bonferroni correction described in the section “Specific Comparisons.” For 
example, suppose you were going to do all pairwise comparisons among four 
means and hold the familywise error rate at 0.05. Since there are six possible 
pairwise comparisons among four means, you would use 0.05/6 = 0.0083 for the 
per-comparison error rate.

As an example, consider the case study “Stroop Interference.” There were 
three tasks each performed by 47 subjects. In the “words” task, subjects read the 
names of 60 color words written in black ink; in the “color” task, subjects named 
the colors of 60 rectangles; in the “interference” task, subjects named the ink color 
of 60 conflicting color words. The times to read the stimuli were recorded. In order 
to compute all pairwise comparisons, the difference in times for each pair of 
conditions for each subject is calculated. Table 1 shows these scores for five of the 
47 subjects.
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Table 1. Pairwise Differences

W-C W-I C-I

-3 -24 -21

2 -41 -43

-1 -18 -17

-4 -23 -19

-2 -17 -15

The means, standard deviations (Sd), and standard error of the mean (Sem), t, and 
p for all 47 subjects are shown in Table 2. The t's are computed by dividing the 
means by the standard errors of the mean. Since there are 47 subjects, the degrees 
of freedom is 46. Notice how different the standard deviations are. For the Tukey 
test to be valid, all population values of the standard deviation would have to be 
the same.

Table 2. Pairwise Comparisons.

Comparison Mean Sd Sem t p

W-C -4.15 2.99 0.44 -9.53 <0.001

W-I -20.51 7.84 1.14 -17.93 <0.001

C-I -16.36 7.47 1.09 -15.02 <0.001

Using the Bonferroni correction for three comparisons, the p value has to be below 
0.05/3 = 0.0167 for an effect to be significant at the 0.05 level. For these data, all p 
values are far below that, and therefore all pairwise differences are significant.
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Statistical Literacy
by David M. Lane

Prerequisites
• Chapter 12: Single Mean

Research on the effectiveness of surgery for weight loss reported here found that 
"The surgery was associated with significantly greater weight loss [than the control 
group who dieted] through 2 years (61.3 versus 11.2 pounds, p<0.001)."

What do you think?
What test could have been used and how would it have been computed?

For each subject a difference score between their initial weight 
and final weight could be computed. A t test of  whether the 
mean difference score differs significantly from 0 could then be 
computed. The mean difference score will equal the difference 
between the mean weight losses of  the two groups (61.3 - 11.2 = 
50.1).
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Exercises

Prerequisites
• All material presented in the Testing Means chapter 

1.The scores of a random sample of 8 students on a physics test are as follows: 60, 
62, 67, 69, 70, 72, 75, and 78.
a. Test to see if the sample mean is significantly different from 65 at the .05 level. 
Report the t and p values.
b. The researcher realizes that she accidentally recorded the score that should 
have been 76 as 67. Are these corrected scores significantly different from 65 at 
the .05 level?

2. A (hypothetical) experiment is conducted on the effect of alcohol on perceptual 
motor ability. Ten subjects are each tested twice, once after having two drinks 
and once after having two glasses of water. The two tests were on two different 
days to give the alcohol a chance to wear off. Half of the subjects were given 
alcohol first and half were given water first. The scores of the 10 subjects are 
shown below. The first number for each subject is their per- formance in the 
“water” condition. Higher scores reflect better performance. Test to see if alcohol 
had a significant effect. Report the t and p values.

water alcohol
16 13
15 13
11 10
20 18
19 17
14 11
13 10
15 15
14 11
16 16

3. The scores on a (hypothetical) vocabulary test of a group of 20 year olds and a 
group of 60 year olds are shown below.

20 yr olds 60 yr olds
27 26
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26 29
21 29
24 29
15 27
18 16
17 20
12 27
13

a. Test the mean difference for significance using the .05 level. 

b. List the assumptions made in computing your answer.

4. The sampling distribution of a statistic is normally distributed with an estimated 
standard error of 12 (df = 20). (a) What is the probability that you would have 
gotten a mean of 107 (or more extreme) if the population parameter were 100? Is 
this probability significant at the .05 level (two-tailed)? (b) What is the 
probability that you would have gotten a mean of 95 or less (one-tailed)? Is this 
probability significant at the .05 level? You may want to use the t Distribution 
calculator for this problem.

5. How do you decide whether to use an independent groups t test or a correlated t 
test (test of dependent means)?

6. An experiment compared the ability of three groups of subjects to remember 
briefly-presented chess positions. The data are shown below.

Non-players Beginners Tournament players
22.1 32.5 40.1
22.3 37.1 45.6
26.2 39.1 51.2
29.6 40.5 56.4
31.7 45.5 58.1
33.5 51.3 71.1
38.9 52.6 74.9
39.7 55.7 75.9
43.2 55.9 80.3
43.2 57.7 85.3

a. Using the Tukey HSD procedure, determine which groups are significantly 
different from each other at the .05 level.
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b. Now compare each pair of groups using t-tests. Make sure to control for the 
familywise error rate (at 0.05) by using the Bonferroni correction. Specify the 
alpha level you used.

7. Below are data showing the results of six subjects on a memory test. The three 
scores per subject are their scores on three trials (a, b, and c) of a memory task. 
Are the subjects get- ting better each trial? Test the linear effect of trial for the 
data.

a b c
4 6 7
3 7 8
2 8 5
1 4 7
4 6 9
2 4 2

a. Compute L for each subject using the contrast weights -1, 0, and 1. That is, 
compute (-1)(a) + (0)(b) + (1)(c) for each subject.
b. Compute a one-sample t-test on this column (with the L values for each 
subject) you created.

8. Participants threw darts at a target. In one condition, they used their preferred 
hand; in the other condition, they used their other hand. All subjects performed in 
both conditions (the order of conditions was counterbalanced). Their scores are 
shown below.

Preferred Non-preferred
12 7
7 9
11 8
13 10
10 9

a. Which kind of t-test should be used? 
b. Calculate the two-tailed t and p values using this t test. 
c. Calculate the one-tailed t and p values using this t test. 

9. Assume the data in the previous problem were collected using two different 
groups of subjects: One group used their preferred hand and the other group used 
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their non-preferred hand. Analyze the data and compare the results to those for 
the previous problem.

10. You have 4 means, and you want to compare each mean to every other mean. 
(a) How many tests total are you going to compute? (b) What would be the 
chance of making at least one Type I error if the Type I error for each test was .
05 and the tests were independent? (c) Are the tests independent and how does 
independence/non-independence affect the probability in (b).

11. In an experiment, participants were divided into 4 groups. There were 20 
participants in each group, so the degrees of freedom (error) for this study was 
80 - 4 = 76. Tukey’s HSD test was performed on the data. (a) Calculate the p 
value for each pair based on the Q value given below. You will want to use the 
Studentized Range Calculator. (b) Which differences are significant at the .05 
level?

Comparison of Groups Q
A - B 3.4
A - C 3.8
A - D 4.3
B - C 1.7
B - D 3.9
C - D 3.7

12. If you have 5 groups in your study, why shouldn’t you just compute a t test of 
each group mean with each other group mean?

13. You are conducting a study to see if students do better when they study all at 
once or in intervals. One group of 12 participants took a test after studying for 
one hour continuously. The other group of 12 participants took a test after 
studying for three twenty minute sessions. The first group had a mean score of 
75 and a variance of 120. The second group had a mean score of 86 and a 
variance of 100.
a. What is the calculated t value? Are the mean test scores of these two groups 
significantly different at the .05 level?
b. What would the t value be if there were only 6 participants in each group? 
Would the scores be significant at the .05 level?
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14. A new test was designed to have a mean of 80 and a standard deviation of 10. 
A random sample of 20 students at your school take the test, and the mean 
score turns out to be 85. Does this score differ significantly from 80?

15. You perform a one-sample t test and calculate a t statistic of 3.0. The mean of 
your sample was 1.3 and the standard deviation was 2.6. How many 
participants were used in this study?

16. True/false: The contrasts (-3, 1 1 1) and (0, 0 , -1, 1) are orthogonal.

17. True/false: If you are making 4 comparisons between means, then based on the 
Bonferroni correction, you should use an alpha level of .01 for each test.

18. True/false: Correlated t tests almost always have greater power than 
independent t tests.

19. True/false: The graph below represents a violation of the homogeneity of 
variance assumption.
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20. True/false: When you are conducting a one-sample t test and you know the 
population standard deviation, you look up the critical t value in the table based 
on the degrees of freedom.

Questions from Case Studies

Angry Moods (AM) case study

21. (AM) Do athletes or non-athletes calm down more when angry? Conduct a t 
test to see if the difference between groups in Control-In scores is statistically 
significant.

22. (AM) Do people in general have a higher Anger-Out or Anger-In score? 
Conduct a t test on the difference between means of these two scores. Are these 
two means independent or dependent?

Smiles and Leniency (SL) case study
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23. (SL) Compare each mean to the neutral mean. Be sure to control for the 
familywise error rate.

24. (SL) Does a “felt smile” lead to more leniency than other types of smiles? (a) 
Calculate L (the linear combination) using the following contrast weights false: 
-1, felt: 2, miserable: -1, neutral: 0. (b) Perform a significance test on this value 
of L.

Animal Research (AR) case study

25. (AR) Conduct an independent samples t test comparing males to females on the 
belief that animal research is necessary.

26. (AR) Based on the t test you conducted in the previous problem, are you able 
to reject the null hypothesis if alpha = 0.05? What about if alpha = 0.1?

27. (AR) Is there any evidence that the t test assumption of homogeneity of 
variance is violated in the t test you computed in #25?

ADHD Treatment (AT) case study

28. (AT) Compare each dosage with the dosage below it (compare d0 and d15, d15 
and d30, and d30 and d60). Remember that the patients completed the task 
after every dosage. (a) If the familywise error rate is .05, what is the alpha level 
you will use for each comparison when doing the Bonferroni correction? (b) 
Which differences are significant at this level?

29. (AT) Does performance increase linearly with dosage?
a. Plot a line graph of this data.
b. Compute L for each patient. To do this, create a new variable where you 
multiply the following coefficients by their corresponding dosages and then 
sum up the total: (-3)d0 + (-1)d15 + (1)d30 + (3)d60 (see #7). What is the mean 
of L?
c. Perform a significance test on L. Compute the 95% confidence interval for L.
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